Skip to main content

Predicting Concept-Based Research Trends with Rhetorical Framing

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 957))

Abstract

Applying data mining techniques to help researchers discover, understand, and predict research trends is a highly beneficial but challenging task. The existing researches mainly use topics extracted from literatures as objects to build predicting model. To get more accurate results, we use concepts instead of topics constructing a model to predict their rise and fall trends, considering the rhetorical characteristics of them. The experimental results based on ACL1965-2017 literature dataset show the clues of the scientific trends can be found in the rhetorical distribution of concepts. After adding the relevant concepts’ information, the predict model’s accuracy rate can be significantly improved, compared to the prior topic-based algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liu, Z., Huang, W., Zheng, Y., Sun, M.: Automatic keyphrase extraction via topic decomposition. In: Conference on Empirical Methods in Natural Language Processing, pp. 366–376, Association for Computational Linguistics (2010)

    Google Scholar 

  2. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Natl. Acad. Sci. USA 101(Suppl. 1), 5228–5235 (2004)

    Article  Google Scholar 

  3. Anderson, A., Dan, M.F., Dan, J.: Towards a Computational History of the ACL: 1980–2008. In: ACL-2012 Special Workshop on Rediscovering 50 Years of Discoveries, pp. 13–21 (2013)

    Google Scholar 

  4. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the International Conference on Machine Learning, pp. 113–120 (2006)

    Google Scholar 

  5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J Mach. Learn. Res. Arch. 3, 993–1022 (2003)

    MATH  Google Scholar 

  6. Hall, D., Jurafsky, D., Manning, C.D.: Studying the history of ideas using topic models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2008, 25–27 October 2008, Honolulu, Hawaii, USA, A Meeting of Sigdat, A Special Interest Group of the ACL, pp. 363–371. DBLP (2008)

    Google Scholar 

  7. Shibata, N., Kajikawa, Y., Takeda, Y., Matsushima, K.: Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation 28(11), 758–775 (2008)

    Article  Google Scholar 

  8. Shibata, N., Kajikawa, Y., Takeda, Y., Matsushima, K.: Comparative study on methods of detecting research fronts using different types of citation. J. Assoc. Inf. Sci. Technol. 60(3), 571–580 (2009)

    Article  Google Scholar 

  9. Mane, K.K., Börner, K.: Mapping topics and topic bursts in PNAS. Proc. Natl. Acad. Sci. USA 101(Suppl 1), 5287–5290 (2004)

    Article  Google Scholar 

  10. Guo, H., Weingart, S., Brner, K.: Mixed-indicators model for identifying emerging research areas. Scientometrics 89(1), 421–435 (2011)

    Article  Google Scholar 

  11. Small, H.: Tracking and predicting growth areas in science. Scientometrics 68(3), 595–610 (2006)

    Article  Google Scholar 

  12. Small, H.: Interpreting maps of science using citation context sentiments: a preliminary investigation. Scientometrics 87(2), 373–388 (2011)

    Article  Google Scholar 

  13. Prabhakaran, V., Hamilton, W.L., Dan, M.F., Dan, J.: Predicting the Rise and Fall of Scientific Topics from Trends in their Rhetorical Framing. In: Meeting of the Association for Computational Linguistics, pp. 1170–1180 (2016)

    Google Scholar 

  14. Grineva, M., Grinev, M., Lizorkin, D.: Extracting key terms from noisy and multitheme documents. In: International Conference on World Wide Web, WWW 2009, Madrid, Spain, April, pp. 661–670. DBLP (2009)

    Google Scholar 

  15. Litvak, M., Last, M.: Graph-based keyword extraction for single-document summarization. In: MMIES 08 Workshop on Multi-source Multilingual Information Extraction & Summar, vol. 64, pp. 17–24 (2008)

    Google Scholar 

  16. Liu, Z., Li, P., Zheng, Y., Sun, M.: Clustering to find exemplar terms for keyphrase extraction. In: Conference on Empirical Methods in Natural Language Processing, vol. 1, PP. 257–266 (2009)

    Google Scholar 

  17. Turney, P.D.: Learning algorithms for keyphrase extraction. Inf. Retrieval 2(4), 303–336 (2000)

    Article  Google Scholar 

  18. Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood knowledge. In: National Conference on Artificial Intelligence, pp. 855–860. AAAI Press (2008)

    Google Scholar 

  19. Yuan, J., Gao, F., Ho, Q., Dai, W., Wei, J., Zheng, X., et al.: LightLDA: big topic models on modest computer clusters. 1351–1361 (2014)

    Google Scholar 

  20. Wang, X., Mccallum, A.: Topics over time: a non-Markov continuous-time model of topical trends. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 424-433. ACM (2006)

    Google Scholar 

  21. Turney, P.D.: Learning to extract keyphrases from text. cs.lg/0212013(cs.LG/0212013) (2002)

    Google Scholar 

  22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 26, 3111–3119 (2013)

    Google Scholar 

  23. Teufel, S.: Argumentative zoning: information extraction from scientific text (1999)

    Google Scholar 

  24. Liakata, M.: Zones of conceptualisation in scientific papers: a window to negative and speculative statements. In: The Workshop on Negation and Speculation in Natural Language Processing, pp. 1-4. Association for Computational Linguistics (2010)

    Google Scholar 

  25. Nguyen, T.D., Kan, M.-Y.: Keyphrase extraction in scientific publications. In: Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS, vol. 4822, pp. 317–326. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77094-7_41

    Chapter  Google Scholar 

  26. Mihalcea, R.: Textrank: bringing order into texts. In: EMNLP, pp. 404–411 (2004)

    Google Scholar 

Download references

Acknowledgement

The work is supported by National Key Research and Development Program of China (2017YFB1002101), NSFC key project (U1736204, 61661146007) and THUNUS NExT Co-Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifan Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, J., Pan, L., Li, J., Du, X. (2019). Predicting Concept-Based Research Trends with Rhetorical Framing. In: Zhao, J., Harmelen, F., Tang, J., Han, X., Wang, Q., Li, X. (eds) Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding. CCKS 2018. Communications in Computer and Information Science, vol 957. Springer, Singapore. https://doi.org/10.1007/978-981-13-3146-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3146-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3145-9

  • Online ISBN: 978-981-13-3146-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics