Skip to main content

Study of Dynamic Changes Through Geoinformatics Technique: A Case Study of Karwar Coast, West Coast of India

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 23))

Abstract

Shoreline is one of the geo-indicators of the coastal zone. Coastal zone is subjected to threats due to change in shoreline. Shoreline change leads to modification and causes for damages of properties, infrastructure around the shoreline region. These modifications, changes of land expands too many issues of the environment under the coastal zone. The present study was carried out by employing remote sensing and GIS techniques for the coastal regime of Karwar, India. LANDSAT-8 remote sensing data was integrated with the GPS data collected during the field survey. The satellite data is processed and analyzed using ERDAS IMAGINE 2014 tool and ArcGIS 10.3 tool, respectively. High Water Line (HWL) is considered for the extraction of shoreline. The visual interpretation of satellite imageries is carried out to distinguish the HWL. Net Shoreline Movement (NSM) was evaluated by adopting Digital Shoreline Analysis System (DSAS) tool. Statistical methods such as Weighted Linear Regression (WLR), Linear Regression Rate (LRR) and End Point Rate (EPR) were used to estimate the changes of shoreline. The present study reveals that shorelines of Karwar Coast, Ravindranath Taghore beach experiences an average erosion rate is −4.61 m/year (EPR), −1.49 m/year (LRR), and 0.19 (WLR) and Devbagh beach experiences an average erosion rate is −9.74 m/year (EPR), −7.53 m/year (LRR), and −11.55 m/year (WLR).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Salghuna NN, Bharathvaj SA (2015) Shoreline change analysis for northern part of the coromandel coast. Aquat Proc 4:317–324. https://doi.org/10.1016/j.aqpro.2015.02.043

    Article  Google Scholar 

  2. Kermani S, Boutiba M, Guendouz M, Guettouche MS, Khelfani D (2016) Detection and analysis of shoreline changes using geospatial tools and automatic computation: case of jijelian sandy coast (East Algeria). Ocean Coast Manag 132:46–58. https://doi.org/10.1016/j.ocecoaman.2016.08.010

    Article  Google Scholar 

  3. Aedla R, Dwarakish GS, Reddy DV (2015) Automatic shoreline detection and change detection analysis of netravati-gurpurRivermouth using histogram equalization and adaptive thresholding techniques. Aquat Proc 4:563–570. https://doi.org/10.1016/j.aqpro.2015.02.073

    Article  Google Scholar 

  4. Rasuly A, Naghdifar R, Rasoli M (2010) Monitoring of Caspian sea coastline changes using object-oriented techniques. Proc Environ Sci 2:416–426. https://doi.org/10.1016/j.proenv.2010.10.046

    Article  Google Scholar 

  5. Boak EH, Turner IL (2005) Shoreline definition and detection: a review. J Coast Res 21(4):688–703. https://doi.org/10.2112/03-0071.1

    Article  Google Scholar 

  6. Berger AR (1996) The geoindicator concept and its application: an introduction. Geoindicators: assessing rapid environmental changes in earth systems, vol 1. AA Balkema, Rotterdam, p 14

    Google Scholar 

  7. Ford M (2013) Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sens Environ 135:130–140. https://doi.org/10.1016/j.rse.2013.03.027

    Article  Google Scholar 

  8. Ruggiero P, Kaminsky GM, Gelfenbaum G, Voigt B (2005) Seasonal to interannual morphodynamics along a high-energy dissipative littoral cell. J Coast Res 21(3):553–578. http://www.jstor.org/stable/4299442

    Article  Google Scholar 

  9. Dolan R, Fenster MS, Holme SJ (1991) Temporal analysis of shoreline recession and accretion. J Coast Res 7(3):723–744. http://www.jstor.org/stable/4297888

  10. Gens R (2010) Remote sensing of coastlines: detection, extraction and monitoring. Int J Remote Sens 31(7):1819–1836. https://doi.org/10.1080/01431160902926673

    Article  Google Scholar 

  11. Hegde AV, Akshaya BJ (2015) Shoreline transformation study of Karnataka Coast: geospatial approach. Aquat Proc 4:151–156. https://doi.org/10.1016/j.aqpro.2015.02.021

    Article  Google Scholar 

  12. Kumar A, Jayappa KS (2009) Long and short-term shoreline changes along Mangalore coast, India. Int J Environ Res 3(2):177–188. https://doi.org/10.22059/ijer.2009.46

  13. Kumar V, Pathak K, Pednekar P, Raju N, Gowthaman R (2006) Coastal processes along the Indian coastline. Curr Sci 91(4):530–536. http://www.jstor.org/stable/24093957

  14. Lanfelder LJ, Stafford DB, Amein M (1970) Coastal Erosion in North Carolina. J Waterw Harb Coast Eng Div 96(2):531–545

    Google Scholar 

  15. Liu Y, Huang H, Qiu Z, Fan J (2013) Detecting coastline change from satellite images based on beach slope estimation in a tidal flat. Int J Appl Earth Obs Geoinf 23:165–176. https://doi.org/10.1016/j.jag.2012.12.005

    Article  Google Scholar 

  16. Crowell M, Leatherman S, Buckley MK (1991) Historical shoreline change: error analysis and mapping accuracy. J Coast Res 7(3):839–852. http://www.jstor.org/stable/4297899

  17. Moussaid J, Fora AA, Zourarah B, Maanan M, Maanan M (2015) Using automatic computation to analyze the rate of shoreline change on the Kenitra coast, Morocco. Ocean Eng 102:71–77. https://doi.org/10.1016/j.oceaneng.2015.04.044

    Article  Google Scholar 

  18. Naik UG (1986) Studies on the plankton and productivity of Kali estuary and inshore waters of Karwar. http://hdl.handle.net/10603/93969

  19. Natesan U, Parthasarathy A, Vishnunath R, Kumar GEJ, Ferrer VA (2015) Monitoring longterm shoreline changes along Tamil Nadu, India using geospatial techniques. Aquat Proc 4:325–332. https://doi.org/10.1016/j.aqpro.2015.02.044

    Article  Google Scholar 

  20. Thieler ER, Danforth WW (1994) Historical shoreline mapping (II): application of the digital shoreline mapping and analysis systems (DSMS/DSAS) to shoreline change mapping in Puerto Rico. J Coast Res 10(3):600–620. http://pubs.er.usgs.gov/publication/70135638

  21. Thieler ER, Himmelstoss EA, Zichichi JL, Ergul A (2009) The Digital Shorelne Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change (No. 2008–1278). US Geological Survey

    Google Scholar 

  22. Thom BG, Hall W (1991) Behaviour of beach profiles during accretion and erosion dominated periods. Earth Surf Proc Land 16(2):113–127. https://doi.org/10.1002/esp.3290160203

    Article  Google Scholar 

  23. Bhat UG, Neelakantan B, Kusuma N, Naik UG (1988) Environmental characteristics of the marine and estuarine habitats of Karwar: an overview. J Indian Fish Assoc 18:401–412. aquaticcommons.org/id/eprint/15991

  24. Ayadi K, Boutiba M, Sabatier F, Guettouche MS (2016) Detection and analysis of historical variations in the shoreline, using digital aerial photos, satellite images, and topographic surveys DGPS: case of the Bejaia bay (East Algeria). Arab J Geosci 9(1):26. https://doi.org/10.1007/s12517-015-2043-9

    Article  Google Scholar 

  25. Dolan R, Hayden B, Heywood J (1978) A new photogrammetric method for determining shoreline erosion. Coast Eng 2:21–39. https://doi.org/10.1016/0378-3839(78)90003-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunkumar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, A., Dodamani, B.M., Dwarakish, G.S. (2019). Study of Dynamic Changes Through Geoinformatics Technique: A Case Study of Karwar Coast, West Coast of India. In: Murali, K., Sriram, V., Samad, A., Saha, N. (eds) Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018). Lecture Notes in Civil Engineering , vol 23. Springer, Singapore. https://doi.org/10.1007/978-981-13-3134-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3134-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3133-6

  • Online ISBN: 978-981-13-3134-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics