Skip to main content

CdS/ZnSe-Based Multicolor Quantum Well Infrared Photodetector for Infrared Application

  • Conference paper
  • First Online:
Advances in Computer, Communication and Control

Abstract

In this paper, the performance of CdS/ZnSe-based quantum well infrared photodetector is studied considering physics-based theoretical modeling. In this model, finite difference method is used to determine eigenenergy states in the quantum well structure. Results show that the absorption coefficient concerning bound-to-bound intersubband transitions using CdS/ZnSe-based QWIP is much larger than III–V-based QWIP like GaAs/AlGaAs. Moreover, multispectral region of infrared operation such as the mid- and long wavelengths of operation is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szweda, R.: QWIPs-multi-spectral mine clearance and medical. III–Vs Rev. 18, 44 (2005)

    Google Scholar 

  2. Gunapala, S.D., Bandara, S.V., Liu, J.K., Luong, E.M., Stetson, N., Shott, C.A., Bock, J.J., Rafol, S.B., Mumolo, J.M., McKelvey, J.: Long-wavelength 256 x256 GaAs/AlGaAs quantum well infrared photodetector (QWIP) palm-size camera. IEEE Trans. Electron Dev. 47(2), 326–332 (2000)

    Article  Google Scholar 

  3. Liu, H.C.: Liu, H.C., Capasso, F., (eds.) Intersubband Transition in Quantum Wells: Physics and Device Applications, pp. 126–196 (Chap. 3). Academic, San Diego (2000)

    Google Scholar 

  4. Cohen, N., Zussman, A., Sarusi, G.: A monolithic LWIR/NIR multi spectral QWIP for night vision and see spot. Infrared Phys. Technol. 42, 391–396 (2001)

    Article  Google Scholar 

  5. Li, J., Choi, K.K., Klem, J.F., Reno, J.L., Tsui, D.C.: High gain, broadband InGaAs/InGaAsP quantum well infrared photodetector. Appl. Phys. Lett. 89, p. 081128-(3p) (2006)

    Google Scholar 

  6. Zeiri, N., Abdi-Ben Nasrallah, S., Sfina, N., Said, M.: Intersubband transitions in quantum well mid-infrared photodetectors. Infrared Phys. Technol. 64, 33–39 (2014)

    Article  Google Scholar 

  7. Mehdi, I., Haddad, G.I., Mains, R.K.: Novel use of resonant tunneling structures for optical and IR modulators. Superlattices Microstruct. 5, 443–449 (1989)

    Article  Google Scholar 

  8. Loehr, J.P., Singh, J., Mains, R.K., Haddad, G.I.: Theoretical studies of the applications of resonant tunneling diodes as intersubband laser and interband excitonic modulators. Appl. Phys. Lett. 59, 2070–2072 (1991)

    Article  Google Scholar 

  9. Ershov, M., Hamaguchi, C., Ryzhii, V.: Device physics and modelling of multiple quantum well infrared photodetectors. Jpn. J. Appl. Phys. 35, 1395–1400 (1996)

    Article  Google Scholar 

  10. Guériaux, V., Nedelcu, A., Bois, P.: Double barrier strained quantum well infrared photodetectors for the 3-5 µm atmospheric window. J. Appl. Phys. 105, 114515 (2009)

    Article  Google Scholar 

  11. Moon, J., Li, S.S., Lee, J.H.: A high performance quantum well infrared photodetector using superlative-coupled quantum wells for long wavelength infrared detection. Infrared Phys. Tech. 44, 229–234 (2003)

    Article  Google Scholar 

  12. Akimoto, R., Li, B.S., Akita, K., Hasama, T.: Subpicosecond saturation of intersubband absorption in (CdS∕ZnSe)∕BeTe(CdS∕ZnSe) ∕BeTe quantum-well waveguides at telecommunication wavelength. Appl. Phys. Lett. 87, 181104 (2005)

    Article  Google Scholar 

  13. Lu, H., Shen, A., Tamargo, M.C., Song, C.Y., Liu, H.C., Zhang, S.K., Alfano, R.R. Muñoz, M.: Midinfrared intersubband absorption in ZnxCd1-xSe/ZnxCdyMg1-x-ySe multiple quantum well structures. Appl. Phys. Lett. 89, 131903-1–131903-3 (2006)

    Google Scholar 

  14. Van de Walle, C.G.: Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39(3), 1871–1883 (1989)

    Article  Google Scholar 

  15. Cuesta, J.A., Sànchez, A., Adame, F.D.: Self-consistent analysis of electric field effects on Si-doped GaAs. Semicon. Sci. Technol. 10, 1303–1309 (1995)

    Google Scholar 

  16. Davies, J.: The Physics of Low-Dimensional Semiconductors An Introduction. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  17. Billaha, A., Das, M.K.: Influence of doping on the performance of GaAs/AlGaAs QWIP for long wavelength applications. Opto-Electron. Rev. 24(1), 25–33 (2016)

    Google Scholar 

  18. Alves, F.D.P., Amorim, J., Byloos, M., Liu, H.C., Bezinger, A., Buchanan, M., Hanson, N., Karunasiri, G.: Three band quantum well infrared photodetector using interband and intersubband transitions. J. Appl. Phys. 103, 114515 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Aref Billaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Billaha, M.A., Rakshit, S., Roy, B., Mondal, B., Choudhary, S.K., Yadav, K.A. (2019). CdS/ZnSe-Based Multicolor Quantum Well Infrared Photodetector for Infrared Application. In: Biswas, U., Banerjee, A., Pal, S., Biswas, A., Sarkar, D., Haldar, S. (eds) Advances in Computer, Communication and Control. Lecture Notes in Networks and Systems, vol 41. Springer, Singapore. https://doi.org/10.1007/978-981-13-3122-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3122-0_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3121-3

  • Online ISBN: 978-981-13-3122-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics