Skip to main content

Negative Differential Resistance in Random Array of Silicon Nanorods

  • Conference paper
  • First Online:
Advances in Computer, Communication and Control

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 41))

Abstract

I-V measurement of electrochemically etched porous Si layer with planner electrode geometry shows negative differential resistance at high bias. This has been explained on the basis of band gap distribution of charge carriers in nanorods of different sizes distributed randomly in the active layer. The carriers follow the low resistive path through the larger rods at smaller applied voltage. But the probability of transport through smaller rods increases at higher voltage due to phonon bottleneck that hinders the relaxation of injected higher energy carriers at the band edges through phonon interaction. The effective charge carrier concentration decreases for smaller rods resulting in the observed negative differential resistance. The flow of charge carrier through nanorods is modelled as random walk in 2D and the simulated I-V characteristics shows a qualitative matching with the experimentally obtained ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57(10), 1046–1048 (2012). https://doi.org/10.1063/1.103561

    Article  Google Scholar 

  2. Bisi, O., Ossicini, S., Pavesi, L.: Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1–126 (2000)

    Article  Google Scholar 

  3. Ray, M., Jana, K., Bandyopadhyay, N.R., Hossain, S.M., Navarro-Urrios, D., Chattyopadhyay, P.P., Green, M.A.: Blue–violet photoluminescence from colloidal suspension of nanocrystalline silicon in silicon oxide matrix. Solid State Commun. 149, 352–356 (2009). https://doi.org/10.1016/j.ssc.2008.12.023

    Article  Google Scholar 

  4. Brown, S.L., Vogel, D.J., Miller, J.B., Inerbaev, T.M., Anthony, R.J., Kortshagen, U.R., Kilin, D.S., Hobbie, E.K.: Enhancing silicon nanocrystal photoluminescence through temperature and microstructure. J. Phys. Chem. C 120, 18909–18916 (2016). https://doi.org/10.1021/acs.jpcc.6b05837

    Article  Google Scholar 

  5. Dasog, M., De los Reyes, G.B., Titova, L.V., Hegmann, F.A., Veinot, J.G.C.: Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano. 8, 9636–9648 (2014). https://doi.org/10.1021/nn504109a

    Article  Google Scholar 

  6. Ray, M., Sarkar, S., Bandyopadhyay, N.R., Hossain, S.M., Pramanick, A.K.: Silicon and silicon oxide core-shell nanoparticles: structural and photoluminescence characteristics. J. Appl. Phys. 105, (2009). https://doi.org/10.1063/1.3100045

    Article  Google Scholar 

  7. Fauchet, M.: Photoluminescence and electroluminescence from porous silicon. J. Lumin. 70, 294–309 (1996). https://doi.org/10.1016/0022-2313(96)82860-2

    Article  Google Scholar 

  8. Ghanta, U., Ray, M., Bandyopadhyay, N.R., Hossain, S.M.: Unipolar resistive switching and tunneling oscillations in isolated Si–SiOx core–shell nanostructure. Nanotechnology 27, 455702 (2016). https://doi.org/10.1088/0957-4484/27/45/455702

    Article  Google Scholar 

  9. Chakrabarty, S., Mandal, S., Ghanta, U., Das, J., Hossain, S.M.: Current controlled switching in Si/PS/a-Si heterostructure. Mater. Today Proc. 5, 9790–9797 (2018). https://doi.org/10.1016/j.matpr.2017.10.168

    Article  Google Scholar 

  10. Ghanta, U., Singh, S., Ray, M., Bandyopadhyay, N.R., Ganapathy, S., Hossain, S.M.: Electrical transport through array of electrochemically etched silicon nanorods. Phys. Status Solidi 214, 1600879 (2017). https://doi.org/10.1002/pssa.201600879

    Article  Google Scholar 

  11. Lee, M., Chu, C., Tseng, Y., Shyr, J., Kao, C.: Negative differential resistance of porous silicon. IEEE Electron Device Lett. 21, 587–589 (2000). https://doi.org/10.1109/55.887474

    Article  Google Scholar 

  12. Hossain, S.M., Das, J., Dutta, S.K., Saha, H.: Mechanism and simulation of uniform nanowires of porous silicon growth on p-si substrate. Int. J. Nanosci. 5, 69–90 (2006). https://doi.org/10.1142/S0219581X0600419X

    Article  Google Scholar 

  13. Sanders, G.D., Chang, Y.: Optical properties of free-standing silicon quantum wires. Appl. Phys. Lett. 60, 2525–2527 (1992). https://doi.org/10.1063/1.106927

    Article  Google Scholar 

  14. Bhattacharyya, S., Samui, S.: Phonon confinement in oxide-coated silicon nanowires. Appl. Phys. Lett. 84, 1564–1566 (2004). https://doi.org/10.1063/1.1651648

    Article  Google Scholar 

  15. Ghosh, R., Pal, A., Giri, P.K.: Quantitative analysis of the phonon confinement effect in arbitrarily shaped Si nanocrystals decorated on Si nanowires and its correlation with the photoluminescence spectrum. J. Raman Spectrosc. 46, 624–631 (2015). https://doi.org/10.1002/jrs.4704

    Article  Google Scholar 

  16. Inoshita, T., Sakaki, H.: Electron-phonon interaction and the so-called phonon bottleneck effect in semiconductor quantum dots. Phys. B Condens. Matter. 227, 373–377 (1996). https://doi.org/10.1016/0921-4526(96)00445-0

    Article  Google Scholar 

  17. Sze, S.M. Ng, K.K.: Physics of Semiconductor Devices. Wiley (2007)

    Google Scholar 

  18. Kittel, C.: Introduction to Solid State Physics. Wiley (2015)

    Google Scholar 

  19. Hossain, S.M., Chakraborty, S., Dutta, S.K., Das, J., Saha, H.: Stability in photoluminescence of porous silicon. J. Lumin. 91, 195–202 (2000). https://doi.org/10.1016/S0022-2313(00)00225-8

    Article  Google Scholar 

  20. Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., Delerue, C.: Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197–200 (1999). https://doi.org/10.1103/PhysRevLett.82.197

    Article  Google Scholar 

Download references

Acknowledgements

Sudipta Chakrabarty acknowledges Department of Science and Technology (DST), Government of India for INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Chakrabarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakrabarty, S., Hossain, S.M. (2019). Negative Differential Resistance in Random Array of Silicon Nanorods. In: Biswas, U., Banerjee, A., Pal, S., Biswas, A., Sarkar, D., Haldar, S. (eds) Advances in Computer, Communication and Control. Lecture Notes in Networks and Systems, vol 41. Springer, Singapore. https://doi.org/10.1007/978-981-13-3122-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3122-0_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3121-3

  • Online ISBN: 978-981-13-3122-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics