Advertisement

Negative Differential Resistance in Random Array of Silicon Nanorods

  • Sudipta ChakrabartyEmail author
  • Syed Minhaz Hossain
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 41)

Abstract

I-V measurement of electrochemically etched porous Si layer with planner electrode geometry shows negative differential resistance at high bias. This has been explained on the basis of band gap distribution of charge carriers in nanorods of different sizes distributed randomly in the active layer. The carriers follow the low resistive path through the larger rods at smaller applied voltage. But the probability of transport through smaller rods increases at higher voltage due to phonon bottleneck that hinders the relaxation of injected higher energy carriers at the band edges through phonon interaction. The effective charge carrier concentration decreases for smaller rods resulting in the observed negative differential resistance. The flow of charge carrier through nanorods is modelled as random walk in 2D and the simulated I-V characteristics shows a qualitative matching with the experimentally obtained ones.

Keywords

Si nanorod Negative differential resistance Phonon 

Notes

Acknowledgements

Sudipta Chakrabarty acknowledges Department of Science and Technology (DST), Government of India for INSPIRE fellowship.

References

  1. 1.
    Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57(10), 1046–1048 (2012).  https://doi.org/10.1063/1.103561CrossRefGoogle Scholar
  2. 2.
    Bisi, O., Ossicini, S., Pavesi, L.: Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1–126 (2000)CrossRefGoogle Scholar
  3. 3.
    Ray, M., Jana, K., Bandyopadhyay, N.R., Hossain, S.M., Navarro-Urrios, D., Chattyopadhyay, P.P., Green, M.A.: Blue–violet photoluminescence from colloidal suspension of nanocrystalline silicon in silicon oxide matrix. Solid State Commun. 149, 352–356 (2009).  https://doi.org/10.1016/j.ssc.2008.12.023CrossRefGoogle Scholar
  4. 4.
    Brown, S.L., Vogel, D.J., Miller, J.B., Inerbaev, T.M., Anthony, R.J., Kortshagen, U.R., Kilin, D.S., Hobbie, E.K.: Enhancing silicon nanocrystal photoluminescence through temperature and microstructure. J. Phys. Chem. C 120, 18909–18916 (2016).  https://doi.org/10.1021/acs.jpcc.6b05837CrossRefGoogle Scholar
  5. 5.
    Dasog, M., De los Reyes, G.B., Titova, L.V., Hegmann, F.A., Veinot, J.G.C.: Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano. 8, 9636–9648 (2014).  https://doi.org/10.1021/nn504109aCrossRefGoogle Scholar
  6. 6.
    Ray, M., Sarkar, S., Bandyopadhyay, N.R., Hossain, S.M., Pramanick, A.K.: Silicon and silicon oxide core-shell nanoparticles: structural and photoluminescence characteristics. J. Appl. Phys. 105, (2009).  https://doi.org/10.1063/1.3100045CrossRefGoogle Scholar
  7. 7.
    Fauchet, M.: Photoluminescence and electroluminescence from porous silicon. J. Lumin. 70, 294–309 (1996).  https://doi.org/10.1016/0022-2313(96)82860-2CrossRefGoogle Scholar
  8. 8.
    Ghanta, U., Ray, M., Bandyopadhyay, N.R., Hossain, S.M.: Unipolar resistive switching and tunneling oscillations in isolated Si–SiOx core–shell nanostructure. Nanotechnology 27, 455702 (2016).  https://doi.org/10.1088/0957-4484/27/45/455702CrossRefGoogle Scholar
  9. 9.
    Chakrabarty, S., Mandal, S., Ghanta, U., Das, J., Hossain, S.M.: Current controlled switching in Si/PS/a-Si heterostructure. Mater. Today Proc. 5, 9790–9797 (2018).  https://doi.org/10.1016/j.matpr.2017.10.168CrossRefGoogle Scholar
  10. 10.
    Ghanta, U., Singh, S., Ray, M., Bandyopadhyay, N.R., Ganapathy, S., Hossain, S.M.: Electrical transport through array of electrochemically etched silicon nanorods. Phys. Status Solidi 214, 1600879 (2017).  https://doi.org/10.1002/pssa.201600879CrossRefGoogle Scholar
  11. 11.
    Lee, M., Chu, C., Tseng, Y., Shyr, J., Kao, C.: Negative differential resistance of porous silicon. IEEE Electron Device Lett. 21, 587–589 (2000).  https://doi.org/10.1109/55.887474CrossRefGoogle Scholar
  12. 12.
    Hossain, S.M., Das, J., Dutta, S.K., Saha, H.: Mechanism and simulation of uniform nanowires of porous silicon growth on p-si substrate. Int. J. Nanosci. 5, 69–90 (2006).  https://doi.org/10.1142/S0219581X0600419XCrossRefGoogle Scholar
  13. 13.
    Sanders, G.D., Chang, Y.: Optical properties of free-standing silicon quantum wires. Appl. Phys. Lett. 60, 2525–2527 (1992).  https://doi.org/10.1063/1.106927CrossRefGoogle Scholar
  14. 14.
    Bhattacharyya, S., Samui, S.: Phonon confinement in oxide-coated silicon nanowires. Appl. Phys. Lett. 84, 1564–1566 (2004).  https://doi.org/10.1063/1.1651648CrossRefGoogle Scholar
  15. 15.
    Ghosh, R., Pal, A., Giri, P.K.: Quantitative analysis of the phonon confinement effect in arbitrarily shaped Si nanocrystals decorated on Si nanowires and its correlation with the photoluminescence spectrum. J. Raman Spectrosc. 46, 624–631 (2015).  https://doi.org/10.1002/jrs.4704CrossRefGoogle Scholar
  16. 16.
    Inoshita, T., Sakaki, H.: Electron-phonon interaction and the so-called phonon bottleneck effect in semiconductor quantum dots. Phys. B Condens. Matter. 227, 373–377 (1996).  https://doi.org/10.1016/0921-4526(96)00445-0CrossRefGoogle Scholar
  17. 17.
    Sze, S.M. Ng, K.K.: Physics of Semiconductor Devices. Wiley (2007)Google Scholar
  18. 18.
    Kittel, C.: Introduction to Solid State Physics. Wiley (2015)Google Scholar
  19. 19.
    Hossain, S.M., Chakraborty, S., Dutta, S.K., Das, J., Saha, H.: Stability in photoluminescence of porous silicon. J. Lumin. 91, 195–202 (2000).  https://doi.org/10.1016/S0022-2313(00)00225-8CrossRefGoogle Scholar
  20. 20.
    Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., Delerue, C.: Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197–200 (1999).  https://doi.org/10.1103/PhysRevLett.82.197CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Engineering Science and TechnologyShibpur, HowrahIndia

Personalised recommendations