Negative Differential Resistance in Random Array of Silicon Nanorods

  • Sudipta ChakrabartyEmail author
  • Syed Minhaz Hossain
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 41)


I-V measurement of electrochemically etched porous Si layer with planner electrode geometry shows negative differential resistance at high bias. This has been explained on the basis of band gap distribution of charge carriers in nanorods of different sizes distributed randomly in the active layer. The carriers follow the low resistive path through the larger rods at smaller applied voltage. But the probability of transport through smaller rods increases at higher voltage due to phonon bottleneck that hinders the relaxation of injected higher energy carriers at the band edges through phonon interaction. The effective charge carrier concentration decreases for smaller rods resulting in the observed negative differential resistance. The flow of charge carrier through nanorods is modelled as random walk in 2D and the simulated I-V characteristics shows a qualitative matching with the experimentally obtained ones.


Si nanorod Negative differential resistance Phonon 



Sudipta Chakrabarty acknowledges Department of Science and Technology (DST), Government of India for INSPIRE fellowship.


  1. 1.
    Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57(10), 1046–1048 (2012). Scholar
  2. 2.
    Bisi, O., Ossicini, S., Pavesi, L.: Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1–126 (2000)CrossRefGoogle Scholar
  3. 3.
    Ray, M., Jana, K., Bandyopadhyay, N.R., Hossain, S.M., Navarro-Urrios, D., Chattyopadhyay, P.P., Green, M.A.: Blue–violet photoluminescence from colloidal suspension of nanocrystalline silicon in silicon oxide matrix. Solid State Commun. 149, 352–356 (2009). Scholar
  4. 4.
    Brown, S.L., Vogel, D.J., Miller, J.B., Inerbaev, T.M., Anthony, R.J., Kortshagen, U.R., Kilin, D.S., Hobbie, E.K.: Enhancing silicon nanocrystal photoluminescence through temperature and microstructure. J. Phys. Chem. C 120, 18909–18916 (2016). Scholar
  5. 5.
    Dasog, M., De los Reyes, G.B., Titova, L.V., Hegmann, F.A., Veinot, J.G.C.: Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano. 8, 9636–9648 (2014). Scholar
  6. 6.
    Ray, M., Sarkar, S., Bandyopadhyay, N.R., Hossain, S.M., Pramanick, A.K.: Silicon and silicon oxide core-shell nanoparticles: structural and photoluminescence characteristics. J. Appl. Phys. 105, (2009). Scholar
  7. 7.
    Fauchet, M.: Photoluminescence and electroluminescence from porous silicon. J. Lumin. 70, 294–309 (1996). Scholar
  8. 8.
    Ghanta, U., Ray, M., Bandyopadhyay, N.R., Hossain, S.M.: Unipolar resistive switching and tunneling oscillations in isolated Si–SiOx core–shell nanostructure. Nanotechnology 27, 455702 (2016). Scholar
  9. 9.
    Chakrabarty, S., Mandal, S., Ghanta, U., Das, J., Hossain, S.M.: Current controlled switching in Si/PS/a-Si heterostructure. Mater. Today Proc. 5, 9790–9797 (2018). Scholar
  10. 10.
    Ghanta, U., Singh, S., Ray, M., Bandyopadhyay, N.R., Ganapathy, S., Hossain, S.M.: Electrical transport through array of electrochemically etched silicon nanorods. Phys. Status Solidi 214, 1600879 (2017). Scholar
  11. 11.
    Lee, M., Chu, C., Tseng, Y., Shyr, J., Kao, C.: Negative differential resistance of porous silicon. IEEE Electron Device Lett. 21, 587–589 (2000). Scholar
  12. 12.
    Hossain, S.M., Das, J., Dutta, S.K., Saha, H.: Mechanism and simulation of uniform nanowires of porous silicon growth on p-si substrate. Int. J. Nanosci. 5, 69–90 (2006). Scholar
  13. 13.
    Sanders, G.D., Chang, Y.: Optical properties of free-standing silicon quantum wires. Appl. Phys. Lett. 60, 2525–2527 (1992). Scholar
  14. 14.
    Bhattacharyya, S., Samui, S.: Phonon confinement in oxide-coated silicon nanowires. Appl. Phys. Lett. 84, 1564–1566 (2004). Scholar
  15. 15.
    Ghosh, R., Pal, A., Giri, P.K.: Quantitative analysis of the phonon confinement effect in arbitrarily shaped Si nanocrystals decorated on Si nanowires and its correlation with the photoluminescence spectrum. J. Raman Spectrosc. 46, 624–631 (2015). Scholar
  16. 16.
    Inoshita, T., Sakaki, H.: Electron-phonon interaction and the so-called phonon bottleneck effect in semiconductor quantum dots. Phys. B Condens. Matter. 227, 373–377 (1996). Scholar
  17. 17.
    Sze, S.M. Ng, K.K.: Physics of Semiconductor Devices. Wiley (2007)Google Scholar
  18. 18.
    Kittel, C.: Introduction to Solid State Physics. Wiley (2015)Google Scholar
  19. 19.
    Hossain, S.M., Chakraborty, S., Dutta, S.K., Das, J., Saha, H.: Stability in photoluminescence of porous silicon. J. Lumin. 91, 195–202 (2000). Scholar
  20. 20.
    Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G., Delerue, C.: Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82, 197–200 (1999). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Engineering Science and TechnologyShibpur, HowrahIndia

Personalised recommendations