Advertisement

Comparative Analysis of Current for Specific Scattering in GaN MOSFET

  • Kaushik MazumdarEmail author
  • Praveen KumarEmail author
  • Aniruddha Ghosal
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 41)

Abstract

The behavior of gallium nitride transistor under the electric–optical phonon scattering is studied and the variation of current density with the concentration charge density is explained. Due to polarization in GaN, two-dimensional electron gas causes the electrons drift velocity to change when some voltage applied to device. The mobility of GaN MOSFET is been studied and plotted with respect to the temperature. The current density which is related to the drift velocity and carrier concentration is analyzed and plotted.

Keywords

High electron mobility transistors (HEMTs) Two-dimensional electron gas (2DEG) Carrier charge concentration Phonon saturation Optical phonon scattering Polarization Effective electron velocity Metal oxide semiconductor field effect transistor (MOSFET) 

Notes

Acknowledgements

This research work was done with the support of my colleagues in the Department of Electronics Engineering, IIT(ISM), Dhanbad India and for their support and allowing me to work in this field.

References

  1. 1.
    White, B.D., Bataiev, M., Goss, S.H., Hu, X., Karmarkar, A., Fleetwood, D.M., Schrimpf, R.D., Schaff, W.J., Brillson, L.J.: Electrical, spectral, and chemical properties of 1.8 MeV proton irradiated AlGaN/GaN HEMT structures as a function of proton fluence. IEEE Trans. Nucl. Sci. 50(6), 1934–1941 (2003)CrossRefGoogle Scholar
  2. 2.
    Oxley, C.H., Uren, M.J.: Measurement of unity gain cutoff frequency and saturation velocity of a GaN HEMT transistor. IEEE Trans. Electron. Devices 52(2), 165–170 (2005)CrossRefGoogle Scholar
  3. 3.
    Eastman, L.F., Tilak, V., Smart, J., Green, B.M., Chumbes, E.M., Dimitrov, R., Kim, H., Ambacher, O.S., Weiman, N., Prunty, T., Murphy, M., Schaff, W.J., Shealy, J.R.: Undoped AlGaN/GaN HEMTs for microwave power amplification. IEEE Trans. Electron. Devices 48(3), 479–485 (2001)CrossRefGoogle Scholar
  4. 4.
    Ardaravicius, L., Liberis, J., Matulionis, A., Eastman, L.F., Shealy, J.R., Vertiatchikh, V.: Self-heating and microwave noise in AlGaN/GaN. Phys. Status Solidi (a) 201(2), 203–206 (2004)CrossRefGoogle Scholar
  5. 5.
    Ardaravicius, L., Matulionis, A., Liberis, J., Kiprijanovic, O., Ramonas, M., Eastman, L.F., Shealy, J.R., Vertiatchikh, A.: Electron drift velocity in AlGaN/GaN channel at high electric fields. Appl. Phys. J. 83(19), 4038–4040 (2003)Google Scholar
  6. 6.
    Barker, J.M., Ferry, D.K., Goodnick, S.M., Koleski, D.D., Allerman, A., Shur, R.J.: High-field transport in GaN/AlGaN heterostructures. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 22(4), 2045–2050 (2004)CrossRefGoogle Scholar
  7. 7.
    Ridley, B.K., Schaff, W.J., Eastman, L.F.: Hot-phonon induced velocity saturation in GaN. J. Appl. Phys. 96(3), 1499–1502 (2004)CrossRefGoogle Scholar
  8. 8.
    Natori, K.: Ballistic metal–oxide–semiconductor field effect transistor. J. Appl. Phys. 76(8), 4879 (1994)CrossRefGoogle Scholar
  9. 9.
    Lundstrom, M.: Elementary scattering theory of the Si MOSFET. IEEE Electron. Device Lett. 18(7), 361–363 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Matulionis, A., Liberis, J., Matulioniene, I., Ramonas, M., Eastman, L.F., Shealy, J.R., Tilak, V., Vertiatchikh, A.: Hot-phonon temperature and lifetime in a biased AlxGa1−xN/GaN channel estimated from noise analysis. Phys. Rev. B Condens. Matter Mater. Phys. 68(3), 335–338 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines) DhanbadDhanbadIndia
  2. 2.Institute of Radio Physics and Electronics, University of CalcuttaKolkataIndia

Personalised recommendations