Skip to main content

Political Economics of Public Pricing of Final and Intermediate Goods

  • Chapter
  • First Online:
Advances in Local Public Economics

Part of the book series: New Frontiers in Regional Science: Asian Perspectives ((NFRSASIPER,volume 37))

Abstract

In this chapter, we study the effect of lobbying by special interest groups on the optimal pricing rule of publicly produced final and intermediate goods. We show that when the weight that the government places on campaign contributions from a special interest group organized by workers increases, the price of publicly produced final goods decreases and that of intermediate goods increases. However, when the weight that the government places on campaign contributions from a special interest group organized by capitalists increases, the effect on the prices of final and intermediate goods depends on capitalists’ roles as both consumers and owners of firms. The effects of lobbying by workers and capitalists are asymmetric because the public enterprise must adhere to its budget constraint and because the roles of capitalists and workers in the economy differ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    De Borger (1997) extends this argument in the direction of the existence of externalities, and further research has applied this concept to various economic environments.

  2. 2.

    A detailed calculation is provided in Appendix section “The Optimal Pricing Rule of a Benevolent Government”.

  3. 3.

    A detailed calculation is provided in Appendix section “The Optimal Pricing Rule with Lobbying Activities”.

  4. 4.

    A detailed calculation is provided in Appendix section “The Effect of Interest on the Price of Publicly Produced Goods”.

References

  • Baumol, W. J., & Bradford, D. F. (1970). Optimal departures from marginal cost pricing. American Economic Review, 60(3), 265–283.

    Google Scholar 

  • De Borger, B. (1997). Public pricing of final and intermediate goods in the presence of externalities. European Journal of Political Economy, 13(4), 765–781.

    Article  Google Scholar 

  • Feldstein, M. S. (1972). Distributional equity and the optimal structure of public prices. American Economic Review, 62(1/2), 32–36.

    Google Scholar 

  • Grossman, G. M., & Helpman, E. (1994). Protection for sale. American Economic Review, 84(4), 833–850.

    Google Scholar 

  • Ramsey, F. P. (1927). A contribution to the theory of taxation. Economic Journal, 37(145), 47–61.

    Article  Google Scholar 

  • Yang, C. C. (1991). The pricing of public intermediate goods revisited. Journal of Public Economics, 45(1), 135–141.

    Article  Google Scholar 

  • Yang, C. C. (1993). Distributional equity and the pricing of public final and intermediate goods. Economics Letters, 41(4), 429–434.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Isao Horiba, Takashi Kuramoto, Hitoshi Saito, Kota Sugahara, and the seminar participants at Oita University for their helpful comments and suggestions. Any remaining errors are our own responsibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Shinozaki .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 The Optimal Pricing Rule of a Benevolent Government

By solving the maximization problem for the government, the first-order conditions can be obtained, as follows:

$$ \frac{\partial W}{{\partial p^{h} }} + \lambda_{1} \left( {\frac{{\partial\pi^{*} }}{{\partial p^{h} }} + \frac{{\partial\pi^{*} }}{{\partial q^{*} }}\frac{{\partial q^{*} }}{{\partial p^{h} }}} \right) = 0, $$
(15.22)
$$ \frac{\partial W}{{\partial p^{f} }} + \lambda_{1} \left( {\frac{{\partial\pi^{*} }}{{\partial p^{f} }} + \frac{{\partial\pi^{*} }}{{\partial q^{*} }}\frac{{\partial q^{*} }}{{\partial p^{f} }}} \right) = 0. $$
(15.23)

Here, as mentioned in the body of this chapter, \( \lambda_{1} \) represents the Lagrange multiplier. Eq. 15.23 can be rewritten as

$$ \begin{aligned} & \frac{\partial W}{{\partial v^{C} }}\left( {\frac{{\partial v^{C} }}{{\partial q^{*} }}\frac{{\partial q^{*} }}{{\partial p^{h} }} + \frac{{\partial v^{C} }}{{\partial p^{h} }} + \frac{{\partial v^{C} }}{{\partial\pi^{*} }}\frac{{\partial\pi^{*} }}{{\partial q^{*} }}\frac{{\partial q^{*} }}{{\partial p^{h} }}} \right) + \frac{\partial W}{{\partial v^{L} }}\left( {\frac{{\partial v^{L} }}{{\partial q^{*} }}\frac{{\partial q^{*} }}{{\partial p^{h} }} + \frac{{\partial v^{L} }}{{\partial p^{h} }}} \right)\\ & \quad + \lambda_{1} \left( {\frac{{\partial\pi^{*} }}{{\partial p^{h} }} + \frac{{\partial\pi^{*} }}{{\partial q^{*} }}\frac{{\partial {\text{q}}^{*} }}{{\partial p^{h} }}} \right) = 0. \end{aligned} $$

Define \( I^{L} \equiv \pi \) and \( I^{C} \equiv L_{y} + L_{z} \). Noting that \( \frac{{\partial v^{i} }}{{\partial q^{*} }} = - \frac{{\partial v^{i} }}{{\partial I^{i} }}y^{i} \) and \( \frac{{\partial v^{i} }}{{\partial p^{h} }} = - \frac{{\partial v^{i} }}{{\partial I^{i} }}z^{h,i} \) hold from Roy’s identity, \( \frac{{\partial\pi^{*} }}{{\partial q^{*} }} = y \) holds from the feature of profit maximization, and \( \frac{{\partial v^{i} }}{{\partial\pi^{*} }} = \frac{{\partial v^{i} }}{{\partial I^{i} }} \), we can further rewrite the above expression as follows:

$$ \frac{\partial W}{{\partial v^{C} }}\frac{{\partial v^{C} }}{{\partial I^{C} }}\left\{ {\left( {y - y^{C} } \right)\frac{{\partial q^{*} }}{{\partial p^{h} }} - z^{h,C} } \right\} + \frac{\partial W}{{\partial v^{L} }}\frac{{\partial v^{L} }}{{\partial I^{L} }}\left\{ {\left( { - y^{L} } \right)\frac{{\partial q^{*} }}{{\partial p^{h} }} - z^{h,L} } \right\} + \lambda_{1} \frac{{\partial\pi^{*} }}{{\partial p^{h} }} = 0. $$

Therefore,

$$ {\frac{\partial W}{{\partial v^{C} }}\left( {\frac{{\partial v^{C} }}{{\partial I^{C} }}\left( {y^{C} - y} \right) + \frac{{\partial v^{L} }}{{\partial I^{L} }}y^{L} } \right)\frac{{\partial q^{*} }}{{\partial p^{h} }} + \frac{\partial W}{{\partial v^{L} }}\left( {\frac{{\partial v^{C} }}{{\partial I^{C} }}z^{h,C} + \frac{{\partial v^{L} }}{{\partial I^{L} }}z^{h,L} } \right)} = \lambda_{1} \frac{{\partial\pi^{*} }}{{\partial p^{h} }} \\ $$
(15.24)

can be obtained.

Similarly, Eq. 15.23 can be rewritten as

$$ \frac{\partial W}{{\partial v^{C} }}\left( {\frac{{\partial v^{C} }}{{\partial q^{*} }}\frac{{\partial q^{*} }}{{\partial p^{f} }} + \frac{{\partial v^{C} }}{{\partial\pi^{*} }}\frac{{\partial\pi^{*} }}{{\partial q^{*} }}\frac{{\partial q^{*} }}{{\partial p^{f} }} + \frac{{\partial v^{C} }}{{\partial\pi^{*} }}\frac{{\partial\pi^{*} }}{{\partial p^{f} }}} \right) + \frac{\partial W}{{\partial v^{L} }}\left( {\frac{{\partial v^{L} }}{{\partial q^{*} }}\frac{{\partial q^{*} }}{{\partial p^{f} }}} \right) + \lambda_{1} \frac{{\partial\pi^{*} }}{{\partial p^{f} }} = 0. $$

Again, from Roy’s identity, \( \frac{{\partial v^{i} }}{{\partial q^{*} }} = - \frac{{\partial v^{i} }}{{\partial I^{i} }}y^{i} \) and \( \frac{{\partial v^{i} }}{{\partial p^{h} }} = - \frac{{\partial v^{i} }}{{\partial I^{i} }}z^{h,i} \) hold, and from Hotelling’s lemma, \( \frac{{\partial\pi^{*} }}{{\partial p^{f} }} = - z^{f} \) holds. Therefore,

$$ \frac{\partial W}{{\partial v^{C} }}\frac{{\partial v^{C} }}{{\partial I^{C} }}\left( {\left( {y - y^{C} } \right)\frac{{\partial q^{*} }}{{\partial p^{f} }} - z^{f} } \right) + \frac{\partial W}{{\partial v^{L} }}\frac{{\partial v^{L} }}{{\partial I^{L} }}\left\{ {\left( { - y^{L} } \right)\frac{{\partial q^{*} }}{{\partial p^{f} }}} \right\} + \lambda_{1} \frac{{\partial\pi^{*} }}{{\partial p^{f} }} = 0 $$

also holds. Finally, we obtain

$$ \frac{\partial W}{{\partial v^{C} }}\left( {\frac{{\partial v^{C} }}{{\partial I^{C} }}\left( {y^{C} - y} \right) + \frac{\partial W}{{\partial v^{L} }}\frac{{\partial v^{L} }}{{\partial I^{L} }}y^{L} } \right)\frac{{\partial q^{*} }}{{\partial p^{h} }} + \frac{\partial W}{{\partial v^{C} }}\frac{{\partial v^{C} }}{{\partial I^{C} }}z^{f} = \lambda_{1} \frac{{\partial\pi^{*} }}{{\partial p^{f} }}. $$
(15.25)

1.2 The Optimal Pricing Rule with Lobbying Activities

Politicians determine the optimal price to maximize Eq. 15.8 given Eqs. 15.10, 15.11, 15.12 and 15.13. When we ignore the general equilibrium effect, the first-order condition can be written as

$$ \begin{aligned} & \lambda_{2} \left( {\left( {z^{h,L} + z^{h,C} } \right) + p^{h} \frac{{\partial \left( {z^{h,L} + z^{h,C} } \right)}}{{\partial p^{h} }}} \right. \\ & \quad \left. { - \frac{{\partial C\left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}{{\partial \left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}\frac{{\partial \left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}{{\partial p^{h} }}} \right) \\ & = \alpha z^{h} + \left( {\theta^{C} \frac{{\partial v^{C} }}{{\partial I^{C} }}z^{h,C} + \theta^{L} \frac{{\partial v^{L} }}{{\partial I^{L} }}z^{h,L} } \right), \\ \end{aligned} $$

As in the previous section, we rewrite the expression as the difference between prices and marginal costs,

$$ \phantom{000000} \begin{aligned} & \frac{{\left( {\alpha - \lambda_{2} } \right)\left( {z^{h,L} + z^{h,C} } \right) + \theta^{C} \frac{{\partial v^{C} }}{{\partial I^{C} }}z^{h,C} + \theta^{L} \frac{{\partial v^{L} }}{{\partial I^{L} }}z^{h,L} }}{{\lambda_{2} }} \\ & = \left\{ {p^{h} - \frac{{\partial C\left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}{{\partial \left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}} \right\}\frac{{\partial \left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}{{\partial p^{h} }} \\ \end{aligned} $$
$$ \begin{aligned} & \frac{{\left( {\alpha - \lambda_{2} } \right) + \theta^{C} \frac{{z^{h,C} }}{{\left( {z^{h,L} + z^{h,C} } \right)}}\frac{{\partial v^{C} }}{{\partial I^{C} }} + \theta^{L} \frac{{z^{h,L} }}{{\left( {z^{h,L} + z^{h,C} } \right)}}\frac{{\partial v^{L} }}{{\partial I^{L} }}}}{{\lambda_{2} \frac{{\partial \left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}{{\partial p^{h} }}\frac{{p^{h} }}{{\left( {z^{h,L} + z^{h,C} } \right)}} }} \\ & = \frac{1}{{p^{h} }}\left\{ {p^{h} - \frac{{\partial C\left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}{{\partial \left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}} \right\} \end{aligned} $$
$$ \phantom{0000}\begin{aligned} \frac{{p^{h} - \frac{{\partial C\left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}{{\partial \left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}}}{{p^{h} }} & = \frac{1}{{\lambda_{2} }}\left( {\frac{1}{{\varepsilon^{h} }}} \right)\left\{ {\left( {\alpha - \lambda_{2} } \right) + \theta^{C} \frac{{z^{h,C} }}{{\left( {z^{h,L} + z^{h,C} } \right)}}\frac{{\partial v^{C} }}{{\partial I^{C} }}} \right. \\ & \quad + \left. { \theta^{L} \frac{{z^{h,L} }}{{\left( {z^{h,L} + z^{h,C} } \right)}}\frac{{\partial v^{L} }}{{\partial I^{L} }}} \right\}, \\ \frac{{p^{h} - \frac{{\partial C\left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}{{\partial \left( {z^{h,L} + z^{h,C} + z^{f} } \right)}}}}{{p^{h} }} & = \frac{{\alpha - \lambda_{2} }}{{\lambda_{2} }}\left( {\frac{1}{{\varepsilon^{h} }}} \right) \\ & \quad + \left( {\frac{{\theta^{C} }}{{\lambda_{2} }}\frac{{z^{h,C} }}{{\left( {z^{h,L} + z^{h,C} } \right)}}\frac{{\partial v^{C} }}{{\partial I^{C} }}} { + \frac{{\theta^{L} }}{{\lambda_{2} }}\frac{{z^{h,L} }}{{\left( {z^{h,L} + z^{h,C} } \right)}}\frac{{\partial v^{L} }}{{\partial I^{L} }}} \right)\left( {\frac{1}{{\varepsilon^{h} }}} \right). \\ \end{aligned} $$
(15.26)

The effect of lobbying activities on the price of publicly produced intermediate goods can be obtained similarly.

1.3 The Effect of Interest on the Price of Publicly Produced Goods

Totally differentiating the first-order condition and the budget constraint of the public enterprise with respect to \( p^{h} \) and \( p^{f} \) gives

$$ \left[ {\begin{array}{*{20}c} {G_{{p^{h} p^{h} }} } & {G_{{p^{h} p^{f} }} } & {\pi_{{p^{h} }}^{*} } \\ {G_{{p^{f} p^{h} }} } & {G_{{p^{f} p^{f} }} } & {\pi_{{p^{f} }}^{*} } \\ {\pi_{{p^{h} }}^{*} } & {\pi_{{p^{f} }}^{*} } & 0 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {dp^{h} } \\ {dp^{f} } \\ {d\lambda_{2} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - G_{{p^{h} \theta^{L} }} } \\ { - G_{{p^{f} \theta^{L} }} } \\ { - \pi_{{\theta^{L} }}^{*} } \\ \end{array} } \right]d\theta^{L} + \left[ {\begin{array}{*{20}c} { - G_{{p^{h} \theta^{C} }} } \\ { - G_{{p^{f} \theta^{C} }} } \\ { - \pi_{{\theta^{C} }}^{*} } \\ \end{array} } \right]d\theta^{C} . $$

The determinant of the matrix on the left-hand side, \( D = G_{{p^{h} p^{f} }} \pi_{{p^{h} }}^{*} \pi_{{p^{f} }}^{*} + G_{{p^{f} p^{h} }} \pi_{{p^{h} }}^{*} \pi_{{p^{f} }}^{*} - G_{{p^{h} p^{h} }} \left( {\pi_{{p^{f} }}^{*} } \right)^{2} - G_{{p^{f} p^{f} }} \left( {\pi_{{p^{h} }}^{*} } \right)^{2} \), is positive from the second-order condition for maximization.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shinozaki, T., Yanagihara, M. (2019). Political Economics of Public Pricing of Final and Intermediate Goods. In: Kunizaki, M., Nakamura, K., Sugahara, K., Yanagihara, M. (eds) Advances in Local Public Economics . New Frontiers in Regional Science: Asian Perspectives, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-13-3107-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3107-7_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3106-0

  • Online ISBN: 978-981-13-3107-7

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics