Skip to main content

Conversion of Glycerine into 1,2-Propanediol for Industrial Applications

  • Chapter
  • First Online:
Jatropha, Challenges for a New Energy Crop

Abstract

Glycerine is a by-product from biodiesel production. After transesterification using methanol, the oil from Jatropha seeds produces high amounts of stearic and palmitic methyl esters and about 10%wt. in glycerol. This chapter deals with the different aspects of the valorization of glycerine for the production of propylene glycol (1,2-PD). After introducing the subject, we evaluate the glycerol and 1,2-PD markets, particularly for pharmaceutical use. We then describe the processes of aqueous-phase hydrogenolysis (APH), aqueous-phase reforming (APR), and catalytic hydrogen transfer (CTH) applied to glycerol and describe some thermodynamics aspects and metal catalysts applied to these processes. Finally, we discuss some detailed kinetic models and application of molecular modeling to this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A subtle distinction in nomenclature is in order: although glycerin and glycerol are widely used interchangeably, the term glycerin (or glycerine) refers to glycerol solutions, typically containing over 95% glycerol, while the term glycerol refers to the propane-1,2,3-triol molecule (C3H8O3) or to the pure compound.

References

  • Abdelrahman OA, Heyden A, Bond JQ (2017) Microkinetic analysis of C 3–C 5 ketone hydrogenation over supported Ru catalysts. J Catal 348:59–74

    Article  CAS  Google Scholar 

  • ABIQUIFI (2017) Associação Brasileira de Indústria Farmoquímica e de Insumos Farmacêuticos: Mercado. http://abiquifi.org.br/mercado_/. Accessed 10 Mar 2018

  • Ahlich A, Shah A (2007) Dow achieves another major milestone in its quest for sustainable chemistries. New Propylene Glycol Provides Environmental Benefits, Reliable Performance and Competitive Economics Midland, MI

    Google Scholar 

  • Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2008) Hydrogenolysis of glycerol to propanediol over Ru: polyoxometalate bifunctional catalyst. Catal Lett 120(3–4):307–311

    Article  CAS  Google Scholar 

  • Alhanash A, Kozhevnikova EF, Kozhevnikov IV (2010) Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Appl Catal A Gen 378(1):11–18

    Article  CAS  Google Scholar 

  • ALICEWEB (2018) Sistema de Análise das Informações de Comércio Exterior – SISCOMEX – BRASIL. Portuguese. http://aliceweb.mdic.gov.br//index/home. Accessed 10 Mar 2018

  • Amada Y, Shinmi Y, Koso S et al (2011) Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst. Appl Catal B Environ 105(1):117–127. https://doi.org/10.1016/j.apcatb.2011.04.001

    Article  CAS  Google Scholar 

  • ANP (2018a) Biodiesel. http://www.anp.gov.br/wwwanp/biocombustiveis/biodiesel. Accessed 27 Feb 2018

  • ANP (2018b) Dados Estatísticos. http://www.anp.gov.br/wwwanp/dados-estatisticos. Accessed 27 Feb 2018

  • Antal M (1975) Hydrogen and food production from nuclear heat and municipal wastes. In: Hydrogen energy. Springer, New York, pp 331–338

    Chapter  Google Scholar 

  • Aresta M, Dibenedetto A, Nocito F et al (2006) A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Mol Catal A Chem 257(1–2):149–153

    Article  CAS  Google Scholar 

  • Auneau F, Michel C, Delbecq F et al (2011) Unravelling the mechanism of glycerol hydrogenolysis over rhodium catalyst through combined experimental–theoretical investigations. Chem Eur J 17(50):14288–14299

    Article  CAS  PubMed  Google Scholar 

  • Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sustain Energ Rev 16(5):2671–2686

    Article  CAS  Google Scholar 

  • Balaraju M, Rekha V, Prasad PS et al (2008) Selective hydrogenolysis of glycerol to 1,2 propanediol over Cu–ZnO catalysts. Catal Lett 126(1–2):119–124

    Article  CAS  Google Scholar 

  • Banu M, Sivasanker S, Sankaranarayanan T et al (2011) Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY. Catal Commun 12(7):673–677

    Article  CAS  Google Scholar 

  • Barbelli ML, Santori GF, Nichio NN (2012) Aqueous phase hydrogenolysis of glycerol to bio-propylene glycol over Pt–Sn catalysts. Bioresour Technol 111:500–503

    Article  CAS  PubMed  Google Scholar 

  • Barbelli ML, Mizrahi MD, Pompeo F et al (2014) EXAFS characterization of PtNi bimetallic catalyst applied to glycerol liquid-phase conversion. J Phys Chem C 118(41):23645–23653

    Article  CAS  Google Scholar 

  • Barrault J, Clacens J-M, Pouilloux Y (2004) Selective oligomerization of glycerol over mesoporous catalysts. Top Catal 27(1–4):137–142

    Article  CAS  Google Scholar 

  • Beatriz A, Araujo YKK, Lima DP (2011) Glycerol: a brief history and their application in stereoselective syntheses. Quím Nova 34(2):306–319

    Article  CAS  Google Scholar 

  • BILLBOARD (1995) Alternative songs. https://www.billboard.com/music/bush/charthistory/alternative-songs/song/37528. Accessed 19 Feb 2018

  • BNDES (2018) Banco Nacional do Desenvolvimento. Brasil. https://www.bndes.gov.br/wps/portal/site/home. Accessed 10 Mar 2018

  • Boga DA, Oord R, Beale AM, Chung YM, Bruijnincx PC, Weckhuysen BM (2013) Highly selective bimetallic pt-cu/mg (al) o catalysts for the aqueous-phase reforming of glycerol. Chem Cat Chem 5(2):529–537

    CAS  Google Scholar 

  • Brandner A, Lehnert K, Bienholz A et al (2009) Production of biomass-derived chemicals and energy: chemocatalytic conversions of glycerol. Top Catal 52(3):278–287

    Article  CAS  Google Scholar 

  • Cao Y-B, Zhang X, Fan J-M et al (2010) Synthesis of hierarchical Co micro/nanocomposites with hexagonal plate and polyhedron shapes and their catalytic activities in glycerol hydrogenolysis. Cryst Growth Des 11(2):472–479

    Article  CAS  Google Scholar 

  • Carrettin S, McMorn P, Johnston P et al (2002) Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem Commun 7:696–697

    Article  CAS  Google Scholar 

  • Chaminand J, Djakovitch L, Gallezot P et al (2004) Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem 6(8):359–361

    Article  CAS  Google Scholar 

  • Checa M, Marinas A, Marinas JM et al (2015) Deactivation study of supported Pt catalyst on glycerol hydrogenolysis. Appl Catal A Gen 507:34–43

    Article  CAS  Google Scholar 

  • Chen Y, Miller DJ, Jackson JE (2007) Kinetics of aqueous-phase hydrogenation of organic acids and their mixtures over carbon supported ruthenium catalyst. Ind Eng Chem Res 46(10):3334–3340

    Article  CAS  Google Scholar 

  • Chiu CW (2006) Catalytic conversion of glycerol to propylene glycol: synthesis and technology assessment. Dissertation, University of Missouri – Columbia, USA

    Google Scholar 

  • Chiu CW, Dasari MA, Suppes GJ et al (2006) Dehydration of glycerol to acetol via catalytic reactive distillation. AICHE J 52(10):3543–3548

    Article  CAS  Google Scholar 

  • Chorkendorff I, Niemantsverdriet JW (2017) Concepts of modern catalysis and kinetics. Wiley, Newark

    Google Scholar 

  • Clark JH, Farmer TJ, Hunt AJ et al (2015) Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int J Mol Sci 16(8):17101–17159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen C, Diu B, Laloe F (1973) Quantum mechanics, vol 1. Wiley, New York

    Google Scholar 

  • Corma A, Huber GW, Sauvanaud L et al (2008) Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal 257(1):163–171

    Article  CAS  Google Scholar 

  • Cortright RD, Davda R, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964–967

    Article  CAS  PubMed  Google Scholar 

  • Dasari MA, Kiatsimkul P-P, Sutterlin WR et al (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A Gen 281(1–2):225–231

    Article  CAS  Google Scholar 

  • Davis ME, Davis RJ (2012) Fundamentals of chemical reaction engineering. Courier Corporation, Newburyport

    Google Scholar 

  • Delgado SN, Yap D, Vivier L et al (2013) Influence of the nature of the support on the catalytic properties of Pt-based catalysts for hydrogenolysis of glycerol. J Mol Catal A Chem 367:89–98

    Article  CAS  Google Scholar 

  • Delgado SN, Vivier L, Especel C (2014) Polyol hydrogenolysis on supported Pt catalysts: comparison between glycerol and 1, 2-propanediol. Catal Commun 43:107–111

    Article  CAS  Google Scholar 

  • Dow (2000) Propilenoglicol. USP/EP – Purity Plus. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0034/0901b80380034a21.pdf?filepath=propyleneglycol/pdfs/n. Accessed 10 Mar 2018

  • El Doukkali M, Iriondo A, Cambra J et al (2013) Pt monometallic and bimetallic catalysts prepared by acid sol–gel method for liquid phase reforming of bioglycerol. J Mol Catal A Chem 368:125–136

    Article  CAS  Google Scholar 

  • El Doukkali M, Iriondo A, Cambra J et al (2014) Deactivation study of the Pt and/or Ni-based γ-Al2O3 catalysts used in the aqueous phase reforming of glycerol for H2 production. Appl Catal A Gen 472:80–91

    Article  CAS  Google Scholar 

  • Feng J, Xu B (2014) Reaction mechanisms for the heterogeneous hydrogenolysis of biomass-derived glycerol to propanediols. Prog React Kinet Mech 39(1):1–15

    Article  CAS  Google Scholar 

  • Feng J, Zhang Y, Xiong W et al (2016) Hydrogenolysis of glycerol to 1,2-propanediol and ethylene glycol over Ru-Co/ZrO2 catalysts. Catalysts 6(4):51

    Article  CAS  Google Scholar 

  • Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods. Gaussian, Pittsburgh Google Scholar:303

    Google Scholar 

  • Furikado I, Miyazawa T, Koso S et al (2007) Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen. Green Chem 9(6):582–588

    Article  CAS  Google Scholar 

  • Gandarias I, Arias PL, Requies J et al (2011) Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. J Catal 282(1):237–247

    Article  CAS  Google Scholar 

  • Gandarias I, Requies J, Arias PL et al (2012a) Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts. J Catal 290:79–89

    Article  CAS  Google Scholar 

  • Gandarias I, Requies J, Arias PL et al (2012b) Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts. J Catal 290:79–89. https://doi.org/10.1016/j.jcat.2012.03.004

    Article  CAS  Google Scholar 

  • Goddard SA, Cortright RD, Dumesic J (1992) Deuterium tracing studies and microkinetic analysis of ethylene hydrogenation over platinum. J Catal 137(1):186–198

    Article  CAS  Google Scholar 

  • Gong L, Lu Y, Ding Y, Lin R, Li J, Dong W, Wang T, Chen W (2010) Selective hydrogenolysis of glycerol to 1, 3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media. Appl Catal A Gen 390(1–2):119–126

    Article  CAS  Google Scholar 

  • Grilc M, Likozar B, Levec J (2014) Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts. Appl Catal B Environ 150:275–287

    Article  CAS  Google Scholar 

  • Guo X, Li Y, Shi R, Liu Q, Zhan E, Shen W (2009) Co/MgO catalysts for hydrogenolysis of glycerol to 1, 2-propanediol. Appl Catal A Gen 371(1–2):108–113

    Article  CAS  Google Scholar 

  • Guo X, Li Y, Song W, Shen W (2011) Glycerol hydrogenolysis over Co catalysts derived from a layered double hydroxide precursor. Catal Lett 141(10):1458

    Article  CAS  Google Scholar 

  • H2O (2018) Especialidades Químicas. Supressora de Poeira. http://www.h2oespecialidades.com.br/servico/servico-details/?id=372. Accessed 10 Mar 2018

  • Hirunsit P, Luadthong C, Faungnawakij K (2015) Effect of alumina hydroxylation on glycerol hydrogenolysis to 1, 2-propanediol over Cu/Al2O3: combined experiment and DFT investigation. RSC Adv 5(15):11188–11197

    Article  CAS  Google Scholar 

  • Holmiere S, Valentin R, Maréchal P et al (2017) Esters of oligo-(glycerol carbonate-glycerol): new biobased oligomeric surfactants. J Colloid Interf Sci 487:418–425

    Article  CAS  Google Scholar 

  • Huai Q, Jiang T, Cao F (2015) Glycerol hydrogenolysis over supported bimetallic Pt-Ni catalyst. Chem React Eng Technol 31(3):193–200

    CAS  Google Scholar 

  • Huang L, Zhu YL, Zheng HY et al (2008) Continuous production of 1, 2-propanediol by the selective hydrogenolysis of solvent-free glycerol under mild conditions. J Chem Technol Biotechnol 83(12):1670–1675

    Article  CAS  Google Scholar 

  • Huber GW, Shabaker JW, Evans ST et al (2006) Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl Catal B Environ 62(3–4):226–235

    Article  CAS  Google Scholar 

  • Jensen F (2017) Introduction to computational chemistry. Wiley, Chichester

    Google Scholar 

  • Jin X, Roy D, Thapa PS, Subramaniam B et al (2013) Atom economical aqueous-phase conversion (APC) of biopolyols to lactic acid, glycols, and linear alcohols using supported metal catalysts. ACS Sustain Chem Eng 1(11):1453–1462

    Article  CAS  Google Scholar 

  • Jin X, Subramaniam B, Chaudhari RV et al (2016) Kinetic modeling of Pt/C catalyzed aqueous phase glycerol conversion with in situ formed hydrogen. AICHE J 62(4):1162–1173

    Article  CAS  Google Scholar 

  • Kale S, Umbarkar S, Dongare M et al (2015) Selective formation of triacetin by glycerol acetylation using acidic ion-exchange resins as catalyst and toluene as an entrainer. Appl Catal A Gen 490:10–16

    Article  CAS  Google Scholar 

  • Karinen R, Krause A (2006) New biocomponents from glycerol. Appl Catal A Gen 306:128–133

    Article  CAS  Google Scholar 

  • Keating P (1966) Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys Rev 145(2):637

    Article  CAS  Google Scholar 

  • Kim ND, Park JR, Park DS et al (2012) Promoter effect of Pd in CuCr2O4 catalysts on the hydrogenolysis of glycerol to 1,2-propanediol. Green Chem 14(9):2638–2646

    Article  CAS  Google Scholar 

  • Kolb V, Orgel LE (1996) Phosphorylation of glyceric acid in aqueous solution using trimetaphosphate. Orig Life Evol Biosph 26(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Kurosaka T, Maruyama H, Naribayashi I et al (2008) Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2. Catal Commun 9(6):1360–1363

    Article  CAS  Google Scholar 

  • Kusunoki Y, Miyazawa T, Kunimori K et al (2005) Highly active metal–acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. Catal Commun 6(10):645–649

    Article  CAS  Google Scholar 

  • Lahr DG, Shanks BH (2003) Kinetic analysis of the hydrogenolysis of lower polyhydric alcohols: glycerol to glycols. Ind Eng Chem Res 42(22):5467–5472

    Article  CAS  Google Scholar 

  • Li X, Wu Q, Zhang B et al (2018) Efficient conversion of glycerol to 1, 2-propenadiol over ZnPd/ZnO-3Al catalyst: the significant influences of calcination temperature. Catal Today 302:210–216

    Article  CAS  Google Scholar 

  • Liu Q, Guo X, Wang T et al (2010a) Synthesis of CoNi nanowires by heterogeneous nucleation in polyol. Mater Lett 64(11):1271–1274

    Article  CAS  Google Scholar 

  • Liu Y, Tüysüz H, Jia C-J et al (2010b) From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer. Chem Commun 46(8):1238–1240

    Article  CAS  Google Scholar 

  • Liu H, Liang S, Jiang T, Han B, Zhou Y (2012) Hydrogenolysis of glycerol to 1, 2-propanediol over Ru–Cu bimetals supported on different supports. CLEAN–Soil Air Water 40(3):318–324

    Article  CAS  Google Scholar 

  • Longjie L, Zhang Y, Aiqin W et al (2012) Mesoporous WO3 supported Pt catalyst for hydrogenolysis of glycerol to 1,3-propanediol. Chin J Catal 33(7–8):1257–1261

    Google Scholar 

  • Maris EP, Ketchie WC, Murayama M et al (2007) Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts. J Catal 251(2):281–294

    Article  CAS  Google Scholar 

  • Martin A, Armbruster U, Gandarias I et al (2013) Glycerol hydrogenolysis into propanediols using in situ generated hydrogen–a critical review. Eur J Lipid Sci Technol 115(1):9–27

    Article  CAS  Google Scholar 

  • Matthey J (2018) Propylene glycol process. http://www.jmprotech.com/licensed-processes-propylene-glycol. Accessed 10 Mar 2018

  • Mauriello F, Ariga H, Musolino M et al (2015) Exploring the catalytic properties of supported palladium catalysts in the transfer hydrogenolysis of glycerol. Appl Catal B Environ 166:121–131

    Article  CAS  Google Scholar 

  • MCCB (2017) Ministério da Casa Civil do Brasil. Secretaria Especial de Agricultura Familiar e do Desenvolvimento Agrário. Progressão do biodiesel – mistura B8 é lei para 2017. http://www.mda.gov.br/sitemda/noticias/progress. Accessed 27 Feb 2018

  • Minowa T, Zhen F, Ogi T (1998) Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluids 13(1–3):253–259

    Article  CAS  Google Scholar 

  • Miyazawa T, Kusunoki Y, Kunimori K et al (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C+ an ion-exchange resin and its reaction mechanism. J Catal 240(2):213–221

    Article  CAS  Google Scholar 

  • Montassier C, Giraud D, Barbier J (1988) Polyol conversion by liquid phase heterogeneous catalysis over metals. Stud Surf Sci Catal 41:165–170

    Article  CAS  Google Scholar 

  • Montassier C, Menezo J, Hoang L et al (1991a) Aqueous polyol conversions on ruthenium and on sulfur-modified ruthenium. J Mol Catal 70(1):99–110

    Article  CAS  Google Scholar 

  • Montassier C, Ménézo J, Moukolo J et al (1991b) Polyol conversions into furanic derivatives on bimetallic catalysts: Cu-Ru, Cu- Pt and Ru- Cu. J Mol Catal 70(1):65–84

    Article  CAS  Google Scholar 

  • Nakagawa Y, Tomishige K (2011) Heterogeneous catalysis of the glycerol hydrogenolysis. Catal Sci Technol 1(2):179–190

    Article  CAS  Google Scholar 

  • Nakagawa Y, Shinmi Y, Koso S et al (2010) Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. J Catal 272(2):191–194

    Article  CAS  Google Scholar 

  • Neurock M (1994) The microkinetics of heterogeneous catalysis. In: Dumesic JA, Rudd DF, Aparicio LM, Rekoske JE, Treviño AA (eds) ACS professional reference book. American Chemical Society, Washington, DC 1993, 315 pp. Wiley Online Library

    Google Scholar 

  • Nilekar AU, Greeley J, Mavrikakis M (2006) A simple rule of thumb for diffusion on transition-metal surfaces. Angew Chem Int Ed Eng 45(42):7046–7049

    Article  CAS  Google Scholar 

  • OEC (2016) The observatory of economic complexity. Glycerol crude; glycerol waters and glycerol lyes. https://atlas.media.mit.edu/en/profile/hs07/1520. Accessed 10 Mar 2018

  • Pamphile-Adrián AJ, Florez-Rodriguez PP, Passos FB (2016) Iridium catalysts for CC and CO hydrogenolysis: catalytic consequences of iridium sites. J Braz Chem Soc 27(5):958–966

    Google Scholar 

  • Panagiotopoulou P, Karamerou EE, Kondarides DI (2013) Kinetics and mechanism of glycerol photo-oxidation and photo-reforming reactions in aqueous TiO2 and Pt/TiO2 suspensions. Catal Today 209:91–98

    Article  CAS  Google Scholar 

  • Pandhare NN, Pudi SM, Mondal S et al (2017) Development of kinetic model for hydrogenolysis of glycerol over Cu/MgO catalyst in a slurry reactor. Ind Eng Chem Res 57(1):101–110

    Article  CAS  Google Scholar 

  • Parr R (2012) The quantum theory of molecular electronic structure. Literary Licensing, LLC, New York

    Google Scholar 

  • Pendem C, Gupta P, Chaudhary N et al (2012) Aqueous phase reforming of glycerol to 1, 2-propanediol over Pt-nanoparticles supported on hydrotalcite in the absence of hydrogen. Green Chem 14(11):3107–3113

    Article  CAS  Google Scholar 

  • Phillips J (1968) Covalent bond in crystals. I. Elements of a structural theory. Phys Rev 166(3):832

    Article  CAS  Google Scholar 

  • Rajkhowa T, Marin GB, Thybaut JW (2017) A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis. Appl Catal B Environ 205:469–480

    Article  CAS  Google Scholar 

  • Ravenelle RM, Copeland JR, Kim W-G, Crittenden JC, Sievers C (2011) Structural changes of γ-Al2O3-supported catalysts in hot liquid water. ACS Catal 1(5):552–561

    Article  CAS  Google Scholar 

  • Ravenelle RM, Copeland JR, Van Pelt AH, Crittenden JC, Sievers C (2012) Stability of Pt/γ-Al2O3 catalysts in model biomass solutions. Top Catal 55(3–4):162–174

    Article  CAS  Google Scholar 

  • Roy D, Subramaniam B, Chaudhari RV (2010) Aqueous phase hydrogenolysis of glycerol to 1, 2-propanediol without external hydrogen addition. Catal Today 156(1–2):31–37

    Article  CAS  Google Scholar 

  • Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Ed Eng 51(11):2564–2601

    Article  CAS  Google Scholar 

  • Sakurai J, Napolitano J (2017) Modern quantum mechanics, vol 1, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Salazar JB, Falcone DD, Pham HN et al (2014) Selective production of 1,2-propanediol by hydrogenolysis of glycerol over bimetallic Ru–Cu nanoparticles supported on TiO2. Appl Catal A Gen 482:137–144

    Article  CAS  Google Scholar 

  • Salciccioli M, Chen Y, Vlachos DG (2010) Density functional theory-derived group additivity and linear scaling methods for prediction of oxygenate stability on metal catalysts: adsorption of open-ring alcohol and polyol dehydrogenation intermediates on Pt-based metals. J Phys Chem C 114(47):20155–20166

    Article  CAS  Google Scholar 

  • Salciccioli M, Stamatakis M, Caratzoulas S et al (2011) A review of multiscale modeling of metal-catalyzed reactions: mechanism development for complexity and emergent behavior. Chem Eng Sci 66(19):4319–4355

    Article  CAS  Google Scholar 

  • SDA (1990) Glycerin: an overview. The Soap and Detergent Association, New York

    Google Scholar 

  • Shinmi Y, Koso S, Kubota T et al (2010) Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Appl Catal B Environ 94(3–4):318–326

    Article  CAS  Google Scholar 

  • Singh UK, Vannice MA (2001) Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts—a review. Appl Catal A Gen 213(1):1–24

    Article  CAS  Google Scholar 

  • Soares AV-H, Perez G, Passos FB (2016a) Alumina supported bimetallic Pt–Fe catalysts applied to glycerol hydrogenolysis and aqueous phase reforming. Appl Catal B Environ 185:77–87

    Article  CAS  Google Scholar 

  • Soares AV, Salazar JB, Falcone DD et al (2016b) A study of glycerol hydrogenolysis over Ru–Cu/Al2O3 and Ru–Cu/ZrO2 catalysts. J Mol Catal A Chem 415:27–36

    Article  CAS  Google Scholar 

  • Soares AVH, Atia H, Armbruster U et al (2017) Platinum, palladium and nickel supported on Fe3O4 as catalysts for glycerol aqueous-phase hydrogenolysis and reforming. Appl Catal A Gen 548:179–190

    Article  CAS  Google Scholar 

  • Stegelmann C, Andreasen A, Campbell CT (2009) Degree of rate control: how much the energies of intermediates and transition states control rates. J Am Chem Soc 131(23):8077–8082

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Wang S, Liu H (2017) Selective hydrogenolysis of glycerol to propylene glycol on supported Pd catalysts: promoting effects of ZnO and mechanistic assessment of active PdZn alloy surfaces. ACS Catal 7(7):4265–4275

    Article  CAS  Google Scholar 

  • Ten Dam J, Hanefeld U (2011) Renewable chemicals: dehydroxylation of glycerol and polyols. Chem Sustain Chem 4(8):1017–1034

    Article  CAS  Google Scholar 

  • Torres A, Roy D, Subramaniam B et al (2010) Kinetic modeling of aqueous-phase glycerol hydrogenolysis in a batch slurry reactor. Ind Eng Chem Res 49(21):10826–10835

    Article  CAS  Google Scholar 

  • van Ryneveld E, Mahomed AS, van Heerden PS et al (2011) Direct hydrogenolysis of highly concentrated glycerol solutions over supported Ru, Pd and Pt catalyst systems. Catal Lett 141(7):958–967

    Article  CAS  Google Scholar 

  • Vasiliadou E, Lemonidou A (2013) Kinetic study of liquid-phase glycerol hydrogenolysis over Cu/SiO2 catalyst. Chem Eng J 231:103–112

    Article  CAS  Google Scholar 

  • Vasiliadou ES, Lemonidou AA (2015) Glycerol transformation to value added C3 diols: reaction mechanism, kinetic, and engineering aspects. WIREs Energ Environ 4(6):486–520

    Article  CAS  Google Scholar 

  • Vasiliadou E, Yfanti V-L, Lemonidou A (2015) One-pot tandem processing of glycerol stream to 1,2-propanediol with methanol reforming as hydrogen donor reaction. Appl Catal B Environ 163:258–266

    Article  CAS  Google Scholar 

  • Viana JDM, Fazzio A, Canuto S (2004) Teoria quântica de moléculas e sólidos: Simulaçao computacional. Editora Livraria da Física, São Paulo

    Google Scholar 

  • Wang S, Liu H (2007) Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts. Catal Lett 117(1–2):62–67

    Article  CAS  Google Scholar 

  • Wang S, Yin K, Zhang Y et al (2013) Glycerol hydrogenolysis to propylene glycol and ethylene glycol on zirconia supported noble metal catalysts. ACS Catal 3(9):2112–2121

    Article  CAS  Google Scholar 

  • Wang Y, Zhou J, Guo X (2015) Catalytic hydrogenolysis of glycerol to propanediols: a review. RSC Adv 5(91):74611–74628

    Article  CAS  Google Scholar 

  • Xi Y, Holladay JE, Frye JG et al (2010) A kinetic and mass transfer model for glycerol hydrogenolysis in a trickle-bed reactor. Org Process Res Dev 14(6):1304–1312

    Article  CAS  Google Scholar 

  • Yu D, Aihara M, Antal MJ Jr (1993) Hydrogen production by steam reforming glucose in supercritical water. Energ Fuels 7(5):574–577

    Article  CAS  Google Scholar 

  • Yu W, Zhao J, Ma H et al (2010) Aqueous hydrogenolysis of glycerol over Ni–Ce/AC catalyst: promoting effect of Ce on catalytic performance. Appl Catal A Gen 383(1–2):73–78

    Article  CAS  Google Scholar 

  • Yuan Z, Wu P, Gao J et al (2009) Pt/solid-base: a predominant catalyst for glycerol hydrogenolysis in a base-free aqueous solution. Catal Lett 130(1–2):261–265

    Article  CAS  Google Scholar 

  • Yuan Z, Wang L, Wang J et al (2011) Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl Catal B Environ 101(3–4):431–440

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao X-C, Wang Y et al (2013) Mesoporous Ti–W oxide: synthesis, characterization, and performance in selective hydrogenolysis of glycerol. J Mater Chem A 1(11):3724–3732

    Article  CAS  Google Scholar 

  • Zhou C-HC, Beltramini JN, Fan Y-X et al (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549

    Article  PubMed  Google Scholar 

  • Zhou Z, Li X, Zeng T et al (2010) Kinetics of hydrogenolysis of glycerol to propylene glycol over Cu-ZnO-Al2O3 catalysts. Chin J Chem Eng 18(3):384–390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio B. Passos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, G.N. et al. (2019). Conversion of Glycerine into 1,2-Propanediol for Industrial Applications. In: Mulpuri, S., Carels, N., Bahadur, B. (eds) Jatropha, Challenges for a New Energy Crop. Springer, Singapore. https://doi.org/10.1007/978-981-13-3104-6_19

Download citation

Publish with us

Policies and ethics