Skip to main content

Can One Use Chlorophyll A Fluorescence as a Physiological Marker of Jatropha curcas L.?

  • Chapter
  • First Online:
Jatropha, Challenges for a New Energy Crop

Abstract

The Núcleo de Estudos da Fotossíntese (NEF) of the Universidade Federal do Espirito Santo studied the regulation of photosynthesis in J. curcas accessions from different regions of Brazil and the world. The effects of environmental variations of stress factors, such as rainfall and temperature, on the kinetics of chlorophyll a fluorescence (CF) induction in leaves of three genotypes, Janaúba (NEF 01), CPATSA 1501 (NEF 02), and CPATSA C2/10 (NEF 03), were investigated for 4 years. High performance of photosystem II, transpiration rate, and rate of net CO2 assimilation were observed mainly in the NEF 02 accession. Since it was necessary to understand the dependence of tolerance mechanisms to diverse environmental stresses, the NEF team followed the development of these plants in several locations. The coastal region presents warm humid tropical climate, in contrast with an inland region where the temperature is very hot in the summer and cold in winter with extremes around 8 °C. The development of J. curcas plants was affected by the level of photosynthetically active radiation, seasonality of temperature and precipitation, casting doubt on the agroclimatic zoning, which meant that physiological variables needed to be considered. The plants with the best yield were those grown in the inland region, although the photochemical efficiency (PIABS and PITOTAL) and the net assimilation of CO 2 (A) of the plants in the coastal region were higher. The molecular mechanisms underlying the species adaptability may serve for modeling plant traits in order to maximize biofuel production and improve the agronomic features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DJ, Ratner K, Giller YE et al (2000) An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L.). J Exp Bot 51(352):1893–1902

    Google Scholar 

  • Ao P-X, Li Z-G, Fan D-M et al (2013) Involvement of antioxidant defense system in chill hardening induced chilling tolerance in Jatropha curcas seedlings. Acta Physiol Plant 35:153–160

    Article  CAS  Google Scholar 

  • Brestic M, Zivcak M, Kalaji HM et al (2012) Photosystem II thermo stability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105

    Article  CAS  Google Scholar 

  • Chen Z, Higgins JD, Hui JTL et al (2011) Retinoblastoma protein is essential for early meiotic events in Arabidopsis. Eur Mol Biol Org J 30:744–755

    Article  CAS  Google Scholar 

  • Christen D, Schönmann S, Jermini M et al (2007) Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60:504–514

    Article  CAS  Google Scholar 

  • Collares DG (2012) Empresa Brasileira de Pesquisa Agropecuária [Internet]. Espirito Santo: Incentivos para pinhão-manso apresentados em Fórum no Espírito Santo [cited 2018 May 01]. Available from: http://www.cnpa.embrapa.br/noticias/2012/noticia_20120718_1.html. (Portuguese)

  • Deng X, Hu Z, Wang H et al (2003) A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichia in response to dehydration and rehydration. Plant Sci 165:851–861

    Article  CAS  Google Scholar 

  • Falqueto AR, Silva Júnior RA, Gomes MTG et al (2017) Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Sci Hort 224:238–243

    Article  CAS  Google Scholar 

  • Feitosa N, Garcia LM, Zonetti PC et al (2009) Levantamento de espécies de plantas daninhas na cultura do pinhão manso (Jatropha curcas L., Euphorbiaceae): VI Encontro Internacional de Produção Cientifica Cesumar; Maringá, Paraná (Portuguese)

    Google Scholar 

  • Flood PJ, Harbinson J, Aarts MG (2011) Natural genetic variation in plant photosynthesis. Trends Plant Sci 16:327–335

    Article  CAS  Google Scholar 

  • Galazzi EB (2011) Desempenho fotossintético de plantas de Jatropha curcas L. cultivadas no estado do Espirito Santo. Dissertation, Universidade Federal do Espírito Santo, Vitória (Portuguese)

    Google Scholar 

  • Galazzi EB, Silva DM (2011) Eficiência fotossintética em plantas de pinhão manso cultivadas em distintas áreas no Estado do Espírito Santo. Anais do II Congresso Brasileiro de Pesquisas de Pinhão-Manso; Brasília, Distrito Federal (Portuguese)

    Google Scholar 

  • Gama VN, Cunha JT, Lima IM et al (2013) Photosynthetic characteristics and quality of five passion fruit varieties under field conditions. Acta Physiol Plant 35:941–948

    Article  CAS  Google Scholar 

  • Gasparini XSS, Santos TA, Silva LF et al (2015) Phenotypic plasticity of Jatropha curcas L. and chlorophyll a fluorescence: Anais do XV Brazilian Congress of Plant Physiology, Campinas, São Paulo

    Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between photosystem II efficiency and quantum of yield photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Guidi L, Calatayud A (2014) Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting Mediterranean areas. Environ Exp Bot 103:42–52

    Article  CAS  Google Scholar 

  • Ilik P, Schansker G, Kotabova E et al (2006) A dip in the chlorophyll fluorescence induction at 0.2–2s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochim Biophys Acta 1757:12–20

    Article  CAS  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A et al (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. https://doi.org/10.1007/s11738-016-2113-y

    Article  CAS  Google Scholar 

  • Kelley LA, Gardner SP, Sutcliffe MJ (1996) An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng 9:1063–1065

    Article  CAS  Google Scholar 

  • Laviola BG, Rosado TB, Bhering LL et al (2010) Genetic parameters and variability in physic nut accessions during early developmental stages. Pesq Agropec Bras 45(10):1117–1123 (Portuguese)

    Article  Google Scholar 

  • Lazár D (2013) Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise. J Theor Biol 335:249–264

    Article  Google Scholar 

  • Li Z-G, Yuan L-X, Wang Q-L et al (2013) Combined action of antioxidant defense system and osmolytes in chilling shock-induced chilling tolerance in Jatropha curcas seedlings. Acta Physiol Plant 35:2127–2136

    Article  CAS  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Ann Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Machado MIP, Laviola BG (2011) Estudo bibliométrico da produção científica em pinhão manso no web of ciência no período de 1945 a 2011: II Congresso Brasileiro De Pesquisa De Pinhão-Manso; novembro de 2011; Brasília, Distrito Federal (Portuguese)

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  • Morales-Flores F, Aguilar MI, King-Díaz B et al (2013) Derivatives of diterpen labdane-8a, 15-diol as photosynthetic inhibitors in spinach chloroplasts and growth plant inhibitors. J Photochem Photobiol 125:42–50

    Article  CAS  Google Scholar 

  • Neuner G, Larcher W (1991) The effect of light, during and subsequent to chilling, on the photosynthetic activity of two soybean cultivars, measured by in vivo chlorophyll fluorescence. Photosynthetica 25(2):257–266

    Google Scholar 

  • Ohada I, Berg A, Berkowicz SM et al (2011) Photoinactivation of photosystem II: is there more than one way to skin a cat? Physiol Plant 142:79–86

    Article  Google Scholar 

  • Oliveira PS, Pereira LS, Silva DC et al (2018) Hydraulic conductivity in stem of young plants of Jatropha curcas L. cultivated under irrigated or water deficit conditions. Ind Crop Prod 116:15–23

    Article  Google Scholar 

  • Osmond B (2014) Our eclectic adventures in the slower eras of photosynthesis: from New England down under to biosphere 2 and beyond. Annu Rev Plant Biol 65:1–32

    Article  CAS  Google Scholar 

  • Parker WC, Mohammed GH (2000) Photosynthetic acclimation of shade-grown red pine (Pinus resinosa Ait.) seedlings to a high light environment. New For 19:1–11

    Article  Google Scholar 

  • Pezzopane JEM, Castro FS, Pezzopane JRM et al (2012) Agrometeoreologia: aplicações para o Espírito Santo. Alegre, Espirito Santo, Caufes (Portuguese)

    Google Scholar 

  • Prado AKS (2007) Florescimento e frutificação em laranjeiras ‘Valência’ com diferentes cargas de frutos e submetidas ou não à irrigação. Brag Camp 66(2):173–182

    Google Scholar 

  • Rungrat T, Awlia M, Brown T et al (2016) Using phenomic analysis of photosynthetic function for abiotic stress response gene discovery. In: The arabidopsis book. The American Society of Plant Biologists. https://doi.org/10.1199/tab.0185

  • Santos CM (2008) Fenologia e capacidade fotossintética do pinhão-manso (Jatropha curcas L.). Dissertation, Universidade Federal de Alagoas, Rio Largo (Portuguese)

    Google Scholar 

  • Santos TA, Tessari LFA, Tonetti Júnior P et al (2012) Respostas fotossintéticas de três genótipos de pinhão manso analisados em condições de campo no município de Santa Teresa/ES: Anais do 5° Congresso da Rede Brasileira de Tecnologia de Biodiesel e 8° Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel; Salvador, Bahia (Portuguese)

    Google Scholar 

  • Santos TA, Gasparini XSS, Tessari LFA et al (2014) Photosynthetic efficiency and chlorophyll fluorescence of Jatropha curcas L. in greenhouse and field: 16th international congress on photobiology. Universidad Nacional de Córdoba, Argentina, Córdoba, p 56

    Google Scholar 

  • Schansker G, Tóth SZ, Holzwarth AR et al (2013) Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth Res 5:1–7

    Google Scholar 

  • Schock AA, Ramm A, Martinazzo EG et al (2014) Crescimento e fotossíntese de plantas de pinhão-manso cultivadas em diferentes condições de luminosidade. Rev Bras Engenharia Agrícola Ambient Campina Grande 18:3–9 (Portuguese)

    Article  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulated fluorometer. Photosynth Res 10:51–62

    Article  CAS  Google Scholar 

  • SEAG (2009) Secretaria de Estado da Agricultura, Abastecimento, Aquicultura e Pesca. Aspectos fitofisionômicos [Internet]. 2009 June [cited 2009 Jun 20]. Available from: www.seag.es.gov.br/setores/silvicultura. (Portuguese)

  • Singh P, Singh S, Mishra SP et al (2010) Molecular characterization of genetic diversity in Jatropha curcas L. Genes Genomes Genomics 4:1–8

    CAS  Google Scholar 

  • Souza A, Wang J-Z, Dehesh K (2017) Retrograde signals: integrators of interorganellar communication and orchestrators of plant development. Annu Rev Plant Biol 68:85–108

    Article  Google Scholar 

  • Stirbet A (2013) Excitonic connectivity between photosystem II units: what is it, and how to measure it? Photosynth Res 116:189–214

    Article  CAS  Google Scholar 

  • Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61

    Article  CAS  Google Scholar 

  • Stirbet A, Riznichenko GY, Rubin AB et al (2014) Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochemistry 79(4):291–323

    CAS  PubMed  Google Scholar 

  • Stirbet A, Lazár D, Kromdijk J et al (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56:86–104

    Article  CAS  Google Scholar 

  • Strasser RJ, Govindjee (1991) The F0 and the O-J-I-P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum Press, New York, pp 423–426

    Google Scholar 

  • Strasser RJ, Strasser BJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP test. In: Mathis P (ed) Photosynthesis: from light to biosphere, V. Kluwer Academic Publishers, Dordrecht, pp 977–980

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (1999) Screening the vitality and photosynthetic activity of plants by fluorescence transient. In: Behl RK, Punia MS, Lather BPS (eds) Crop improvement for food security. SSARM, Hisar, pp 79–126

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescent transient as a tool to characterise and screen photosynthesic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London, pp 445–483

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC (ed) Chlorophyll a fluorescence: a signature of photosynthesis-advances in photosynthesis and respiration. Springer, Rotterdam, pp 321–362

    Chapter  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S et al (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta 1797:1313–1326

    Article  CAS  Google Scholar 

  • Tanya P, Taeprayoon P, Hadkam Y et al (2011) Genetic diversity among Jatropha and Jatropha-related species based on ISSR markers. Plant Mol Biol Rep 29:252–264

    Article  Google Scholar 

  • Tessari LFA, Santos TA, Sabino DSG et al (2012) Plasticidade fenotípica de três genótipos de pinhão manso em resposta à temperatura: Anais do 5° Congresso da Rede Brasileira de Tecnologia de Biodiesel e 8° Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel; Salvador, Bahia (Portuguese)

    Google Scholar 

  • Toledo JV, Martins LD, Klippel VH et al (2009) Zoneamento agroclimático para a cultura do pinhão manso (Jatropha curcas L.) e da mamona (Ricinus communis L.) no estado do Espírito Santo. ACSA – Agrop Cient Semi-Árido 5:41–51 (Portuguese)

    Google Scholar 

  • Tsimilli-Michael M, Strasser RJ (2008) Experimental resolution and theoretical complexity determine the amount of information extractable from the chlorophyll fluorescence transient OJIP. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th international congress on photosynthesis. Springer, Dordrecht, pp 697–701

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diolina Moura Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, D.M., Santos, R.N., Damasceno, P.C. (2019). Can One Use Chlorophyll A Fluorescence as a Physiological Marker of Jatropha curcas L.?. In: Mulpuri, S., Carels, N., Bahadur, B. (eds) Jatropha, Challenges for a New Energy Crop. Springer, Singapore. https://doi.org/10.1007/978-981-13-3104-6_15

Download citation

Publish with us

Policies and ethics