Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 246 Accesses

Abstract

In Chap. 2, we have reviewed some basic properties of some examples of 6d SCFTs. In this chapter, we would like to investigate torus compactifications of the theories which appeared in the previous chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\mathscr {N}{=}\,4\) SYM is not self-dual under the S-duality even when \(G=\mathrm {SU}(N)\) since its Langlands dual is \(\mathrm {SU}(N)/\mathbb {Z}_N\). The global data depends on choice of basis of cycle, and this is because the “meta”-ness of the \(A_{N-1}\) \(\mathscr {N}{=}\,(2,0)\) theory [1]. This subtlety exists also for \(\mathscr {N}{=}\,(1,0)\) theories which is not very-higgsable though we will not study further in this direction.

  2. 2.

    Here, we focus on the case where we can go to the root to \(\mathscr {N}{=}\,(2,0)\) theory by recursively shrinking tensor vev \(a^k\) with \(\eta ^{kk}=1\). In other words, the root to \(\mathscr {N}{=}\,(2,0)\) is the endpont. A counterexample of this restriction is \(\mathscr {T}^{({\mathfrak {usp}},{\mathfrak {usp}})}_{N}\).

  3. 3.

    Here we do not introduce Wilson lines along the torus. When generic Wilson lines are turned on, the situation is different [3].

  4. 4.

    Instead, if we allow ourselves to turn on Wilson lines as we discussed in Sect. 2.4.4 for \(\mathscr {T}^{({\mathfrak {g}},{\mathfrak {g}})}_{N}\), the two properties are satisfied when compactified further to 4d, since the affine quiver is conformal in 4d. In fact the generalization to compactification by general Riemann surfaces with nontrivial flavor bundles gives 4d \(\mathscr {N}{=}\,1\) SCFTs [4], and \({\mathfrak {g}}=A_{k-1}\) case which is called class \(\mathrm {S}_k\) is somewhat extensively studied [3, 5].

  5. 5.

    The Higgs branch is robust under the compactification thanks to eight supercharges, thus u does not mix with Higgs scalars.

  6. 6.

    Instead, asymptotic behavior (3.6) is enough to constrain the special geometry as said in [6].

  7. 7.

    This number is related to the fact that an O7\({}^-\) is actually a non-pertubative bound-state of (1, 1) and \((1,-1)\) 7-branes and thus there are 12 branes in the left of Fig. 3.1. We are going to heavily use this fact in Sect. 3.2.

  8. 8.

    In fact, in general A(u) though to be equal to \((\frac{\partial u}{\partial a})^{\frac{1}{2}}\). The later calculation will be simplified when this formula is assumed [9].

  9. 9.

    The method here is never independent of the method of [9]. This is just a consistency check.

  10. 10.

    The paper [24] coincidently appeared on arXiv with [23]. The basic strategy is almost the same, and the former covers more general cases than the latter.

  11. 11.

    When \(u_i=1\) for \(i=2,\ldots ,N\), \(\mathscr {T}^\text {6d}\{u_i=1\}\) is the rank N E-string theory plus a decoupled hyper, and the corresponding theory is \(\widehat{\mathsf {T}}_{6N}\{[N^5,N-1,1],[2N,2N,2N],[3N,3N]\}\), which was firstly observed by the index calculation [26].

  12. 12.

    Our normalizations for central charges and anomaly polynomial are those of [6, 36]

  13. 13.

    The formulas below are valid only when \(\sum _ip^{(i)}_k\ge 2k-1\). When \(u_i=0\) which corresponds to the higher rank \(E_8\) Minahan–Nemeschansky theory, the pole structure for the class S description violates this bound. That case was studied well in [25] as already mentioned.

  14. 14.

    This condition is the same as the conformality condition of 4d \(\mathscr {N}{=}\,2\) quiver theory with \({\mathfrak {su}}\) gauge algebras. Intuitive understanding of this coincidence seems to be absent.

  15. 15.

    Since the 6d theory has the Higgs branch on which the theory flows to the \(\mathscr {N}{=}\,(2,0)\) theory along \(\mathscr {C}_\mathrm {T}\), there is also a subspace of the 5d/4d Coulomb branch where the corresponding branch opens. This clearly defines the subspace \(\mathscr {C}_\mathrm {T}\) in 5d/4d.

  16. 16.

    There, it was shown that the \(T^2\) compactification of very higgsable theory is a 4d SCFT, and the structure of the singularities on its Coulomb branch was also completely fixed. Taking the limit of very thin \(T^2\), we can obtain the singularity structure of the Coulomb branch of the 5d theory, which shows that the origin of the 5d theory is superconformal.

  17. 17.

    See the last equation in Sect. 3.4 of [45]. The \(\mathfrak {m}_\pm \) in that paper is taken to be \(m_G\) here, and \(H_i\) there is \(\frac{1}{2}H^i\) here.

  18. 18.

    The full answer for \({\mathfrak {g}}=D_k\) case was obtained after publishing [36], and appears nowhere in the literature.

  19. 19.

    Note that we have \({{\mathfrak {g}}}_T={\mathfrak {g}}_B={{\mathfrak {g}}}_L={\mathfrak {g}}_R={\mathfrak {g}}\) here. The subscripts are there to distinguish various factors.

  20. 20.

    A puncture of class S of type G theory can be twisted by a nontrivial outer-automorphism of G.

  21. 21.

    When \(N=2\), since the puncture given by colliding [2, 2] and \(\underline{T\!M}\) is \(\underline{[2^2,1]}\) in the notation of [56] which is smaller than the twisted full puncture \(\underline{T\!F}\), \(\underline{\mathscr {O}_k}\) = \(\underline{[2^2,1]}\). When \(N\ge 3\) the puncture arising from [2, 2] and \(\underline{T\!M}\) is the twisted full puncture \(\underline{T\!F}\), so the statement of the main text is correct.

References

  1. Y. Tachikawa, On the 6d origin of discrete additional data of 4d gauge theories. JHEP 05, 020 (2014). arXiv:1309.0697 [hep-th]

    Article  ADS  Google Scholar 

  2. O.J. Ganor, D.R. Morrison, N. Seiberg, Branes, Calabi-Yau spaces, and toroidal compactification of the N \(=\) 1 six-dimensional E(8) theory. Nucl. Phys. B487, 93–127 (1997), arXiv:hep-th/9610251 [hep-th]

  3. D. Gaiotto, S.S. Razamat, \( \cal{N}=1 \) theories of class \( {\cal{S}}_k \). JHEP 07, 073 (2015). arXiv:1503.05159 [hep-th]

    Article  ADS  Google Scholar 

  4. D.R. Morrison, C. Vafa, F-theory and N \(=\) 1 SCFTs in four dimensions, arXiv:1604.03560 [hep-th]

  5. S. Franco, H. Hayashi, A. Uranga, Charting Class \(\cal{S}_k\) Territory. Phys. Rev. D 92(4), 045004 (2015). arXiv:1504.05988 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Ohmori, H. Shimizu, Y. Tachikawa, K. Yonekura, 6d \(\cal{N}=(1,0)\) theories on \(T^2\) and class S theories: part I. JHEP 07, 014 (2015). arXiv:1503.06217 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  7. D.R. Morrison, C. Vafa, Compactifications of F theory on Calabi-Yau threefolds. 1. Nucl. Phys. B473, 74–92 (1996), arXiv:hep-th/9602114 [hep-th]

  8. D.R. Morrison, C. Vafa, Compactifications of F theory on Calabi-Yau threefolds. 2. Nucl. Phys. B476, 437–469 (1996), arXiv:hep-th/9603161 [hep-th]

  9. A.D. Shapere, Y. Tachikawa, Central charges of N \(=\) 2 superconformal field theories in four dimensions. JHEP 09, 109 (2008). arXiv:0804.1957 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Witten, On S duality in Abelian gauge theory. Selecta Math. 1, 383 (1995). arXiv:hep-th/9505186 [hep-th]

    Article  MathSciNet  Google Scholar 

  11. D. Anselmi, D.Z. Freedman, M.T. Grisaru, A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories. Nucl. Phys. B526, 543–571 (1998), arXiv:hep-th/9708042 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Anselmi, J. Erlich, D.Z. Freedman, A.A. Johansen, Positivity constraints on anomalies in supersymmetric gauge theories. Phys. Rev. D57, 7570–7588 (1998), arXiv:hep-th/9711035 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  13. S.M. Kuzenko, S. Theisen, Correlation functions of conserved currents in N \(=\) 2 superconformal theory. Class. Quant. Grav. 17, 665–696 (2000), arXiv:hep-th/9907107 [hep-th]

  14. N. Seiberg, E. Witten, Electric - magnetic duality, monopole condensation, and confinement in N \(=\) 2 supersymmetric Yang-Mills theory. Nucl. Phys. B426, 19–52 (1994), arXiv:hep-th/9407087 [hep-th]. [Erratum: Nucl. Phys.B430,485(1994)]

  15. O. Aharony, Y. Tachikawa, A Holographic computation of the central charges of d \(=\) 4, N \(=\) 2 SCFTs. JHEP 01, 037 (2008). arXiv:0711.4532 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Del Zotto, C. Vafa, D. Xie, Geometric engineering, mirror symmetry and \( 6{\rm d\rm _{\left(1,0\right)}\rightarrow 4{\rm d}}_{\left(\cal{N}=2\right)} \). JHEP 11, 123 (2015). arXiv:1504.08348 [hep-th]

    Article  ADS  Google Scholar 

  17. O. Chacaltana, J. Distler, Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N=(2,0) theories. Int. J. Mod. Phys. A 28, 1340006 (2013). arXiv:1203.2930 [hep-th]

    Article  ADS  Google Scholar 

  18. M. Atiyah, E. Witten, M theory dynamics on a manifold of G(2) holonomy. Adv. Theor. Math. Phys. 6, 1–106 (2003), arXiv:hep-th/0107177 [hep-th]

  19. K. Maruyoshi, Y. Tachikawa, W. Yan, K. Yonekura, N \(=\) 1 dynamics with \(T_N\) theory. JHEP 10, 010 (2013). arXiv:1305.5250 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  20. Y. Tachikawa, A review of the \(T_N\) theory and its cousins. PTEP 2015(11), 11B102 (2015). arXiv:1504.01481 [hep-th]

    MathSciNet  Google Scholar 

  21. E. Brieskorn, Singular elements of semi-simple algebraic groups, in Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 (Gauthier-Villars, Paris, 1971), pp. 279–284

    Google Scholar 

  22. P. Slodowy, Simple Singularities and Simple Algebraic Groups, vol. 815 (Lecture Notes in Mathematics (Springer, Berlin, 1980)

    MATH  Google Scholar 

  23. K. Ohmori, H. Shimizu, \(S^1/T^2\) compactifications of 6d \( \cal{N}=\left(1,\;0\right) \) theories and brane webs. JHEP 03, 024 (2016). arXiv:1509.03195 [hep-th]

    Article  ADS  Google Scholar 

  24. G. Zafrir, Brane webs, \(5d\) gauge theories and \(6d\)\(\cal{N}\)\(=(1,0)\) SCFT’s. JHEP 12, 157 (2015). arXiv:1509.02016 [hep-th]

    ADS  MATH  Google Scholar 

  25. F. Benini, S. Benvenuti, Y. Tachikawa, Webs of five-branes and N=2 superconformal field theories. JHEP 09, 052 (2009). arXiv:0906.0359 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Gaiotto, S.S. Razamat, Exceptional Indices. JHEP 05, 145 (2012). arXiv:1203.5517 [hep-th]

    Google Scholar 

  27. O. Chacaltana, J. Distler, Tinkertoys for Gaiotto Duality. JHEP 11, 099 (2010). arXiv:1008.5203 [hep-th]

    Article  Google Scholar 

  28. O. Aharony, A. Hanany, B. Kol, Webs of \((p, q)\) five-branes, five-dimensional field theories and grid diagrams. JHEP 01, 002 (1998), arXiv:hep-th/9710116 [hep-th]

  29. O. DeWolfe, T. Hauer, A. Iqbal, B. Zwiebach, Uncovering the symmetries on \([p,q]\) seven-branes: beyond the Kodaira classification. Adv. Theor. Math. Phys. 3, 1785–1833 (1999), arXiv:hep-th/9812028 [hep-th]

  30. O. DeWolfe, Affine Lie algebras, string junctions and seven-branes. Nucl. Phys. B550, 622–637 (1999), arXiv:hep-th/9809026 [hep-th]

  31. O. DeWolfe, A. Hanany, A. Iqbal, E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories. JHEP 03, 006 (1999), arXiv:hep-th/9902179 [hep-th]

    Article  Google Scholar 

  32. H. Hayashi, S.-S. Kim, K. Lee, M. Taki, F. Yagi, A new 5d description of 6d D-type minimal conformal matter. JHEP 08, 097 (2015). arXiv:1505.04439 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Sen, F theory and orientifolds. Nucl. Phys. B475, 562–578 (1996), arXiv:hep-th/9605150 [hep-th]

  34. S.-S. Kim, M. Taki, F. Yagi, Tao probing the end of the world. PTEP 2015(8), 083B02 (2015), arXiv:1504.03672 [hep-th]

    Article  MathSciNet  Google Scholar 

  35. D. Gaiotto, A. Tomasiello, Holography for (1,0) theories in six dimensions. JHEP 12, 003 (2014). arXiv:1404.0711 [hep-th]

    Article  ADS  Google Scholar 

  36. K. Ohmori, H. Shimizu, Y. Tachikawa, K. Yonekura, 6d \(\cal{N}=\left(1,\;0\right) \) theories on S\(^{1}\) /T\(^{2}\) and class S theories: part II. JHEP 12, 131 (2015). arXiv:1508.00915 [hep-th]

    ADS  MathSciNet  Google Scholar 

  37. K. Ohmori, H. Shimizu, Y. Tachikawa, K. Yonekura, Anomaly polynomial of general 6d SCFTs. PTEP2014(10), 103B07 (2014), arXiv:1408.5572 [hep-th]

  38. J.J. Heckman, D.R. Morrison, C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds. JHEP 05, 028 (2014), arXiv:1312.5746 [hep-th]. [Erratum: JHEP06,017(2015)]

  39. M. Del Zotto, J.J. Heckman, A. Tomasiello, C. Vafa, 6d Conformal Matter. JHEP 02, 054 (2015). arXiv:1407.6359 [hep-th]

    Article  MathSciNet  Google Scholar 

  40. V. Sadov, Generalized Green–Schwarz mechanism in F theory. Phys. Lett. B388, 45–50 (1996), arXiv:hep-th/9606008 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  41. J.J. Heckman, D.R. Morrison, T. Rudelius, C. Vafa, Atomic classification of 6D SCFTs. Fortsch. Phys. 63, 468–530 (2015). arXiv:1502.05405 [hep-th]

    Article  ADS  Google Scholar 

  42. M.R. Douglas, On D=5 super Yang-Mills theory and (2,0) theory. JHEP 02, 011 (2011). arXiv:1012.2880 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  43. N. Lambert, C. Papageorgakis, M. Schmidt-Sommerfeld, M5-Branes, D4-Branes and quantum 5D super-Yang-Mills. JHEP 01, 083 (2011). arXiv:1012.2882 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  44. Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories. PTEP 2015(4), 043B06 (2015), arXiv:1501.01031 [hep-th]

  45. K. Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories. JHEP 07, 167 (2015). arXiv:1505.04743 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  46. M.R. Douglas, G.W. Moore, D-branes, quivers, and ALE instantons, arXiv:hep-th/9603167 [hep-th]

  47. O. Aharony, A. Hanany, “Branes, superpotentials and superconformal fixed points,” Nucl. Phys.B504 (1997) 239–271, arXiv:hep-th/9704170 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  48. D. Gaiotto, \(N=2\) dualities. JHEP 08, 034 (2012). arXiv:0904.2715 [hep-th]

    Article  ADS  Google Scholar 

  49. O. Bergman, G. Zafrir, Lifting 4d dualities to 5d. JHEP 04, 141 (2015). arXiv:1410.2806 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  50. H. Hayashi, Y. Tachikawa, K. Yonekura, Mass-deformed T\(_{N}\) as a linear quiver. JHEP 02, 089 (2015). arXiv:1410.6868 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  51. D. Gaiotto, J. Maldacena, The Gravity duals of N \(=\) 2 superconformal field theories. JHEP 10, 189 (2012). arXiv:0904.4466 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  52. D. Gaiotto, G.W. Moore, Y. Tachikawa, On 6d \(\cal N\it =\)(2,0) theory compactified on a Riemann surface with finite area. PTEP2013, 013B03 (2013), arXiv:1110.2657 [hep-th]

  53. Y. Tachikawa, “N=2 supersymmetric dynamics for pedestrians,” in Lecture Notes in Physics, vol. 890, 2014, vol. 890, p. 2014. 2013. arXiv:1312.2684 [hep-th]. https://inspirehep.net/record/1268680/files/arXiv:1312.2684.pdf

  54. O. Chacaltana, J. Distler, Tinkertoys for the \(D_N\) series. JHEP 02, 110 (2013). arXiv:1106.5410 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  55. O. Chacaltana, J. Distler, A. Trimm, Tinkertoys for the E\(_{6}\) theory. JHEP 09, 007 (2015). arXiv:1403.4604 [hep-th]

    Article  MathSciNet  Google Scholar 

  56. O. Chacaltana, J. Distler, Y. Tachikawa, Gaiotto duality for the twisted A\(_{2N-1}\) series. JHEP 05, 075 (2015). arXiv:1212.3952 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kantaro Ohmori .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohmori, K. (2018). Circle and Torus Compactifications. In: Six-Dimensional Superconformal Field Theories and Their Torus Compactifications. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-3092-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3092-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3091-9

  • Online ISBN: 978-981-13-3092-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics