Skip to main content

Multi-response Optimization of Micro-EDM Processes: A State-of-the-Art Review

  • Chapter
  • First Online:
Book cover Micro-electrical Discharge Machining Processes

Abstract

The demand of micro-machining with a diameter ranging from microns to some hundred is rising gradually in the field of aerospace, biomaterials, electronics, and automobiles, due to its noteworthy applications and benefits in miniaturized merchandises and gadgets. µ-EDM is the well-known non-traditional method used for making micro-metallic holes with assorted benefits like its distinguishing non-contact feature and thermoelectric energy between the workpiece to be machined and the electrode to be used. μ-EDM is a modification of the traditional EDM, rendering an imperative function in the generation of micro-features on hard-to-machine materials. In recent years, both processes, i.e., EDM and μ-EDM, are used extensively for production of dies, mold making, cavities, and complex 3D structures. The micro-components are typically finished by hard-to-machine materials and hold multifaceted shaped micro-structures that required accuracy in the level of sub-micron machining. This chapter provides an overview and the theoretical study of the latest 10-year researches from 2009 to 2018 that used decision-making and nature-inspired techniques in optimizing machining parameters of μ-EDM and μ-WEDM processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jahan M, Rahman M, Wong Y (2011) A review on the conventional and micro-electrodischarge machining of tungsten carbide. Int J Mach Tools Manuf 51(12):837–858

    Article  Google Scholar 

  2. Ho K, Newman S, Rahimifard S, Allen R (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44(12–13):1247–1259

    Article  Google Scholar 

  3. Wong Y, Rahman M, Lim H, Han H, Ravi N (2003) Investigation of micro-EDM material removal characteristics using single RC-pulse discharges. J Mater Process Technol 140(1–3):303–307

    Article  Google Scholar 

  4. Guitrau EB (1997) The EDM handbook. Hanser Gardner Publications Cincinnati

    Google Scholar 

  5. Ho K, Newman S (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300

    Article  Google Scholar 

  6. Gao C, Liu Z (2003) A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J Mater Process Technol 139(1–3):226–228

    Article  Google Scholar 

  7. Nakaoku H, Masuzawa T, Fujino M (2007) Micro-EDM of sintered diamond. J Mater Process Technol 187:274–278

    Article  Google Scholar 

  8. Tsai YY, Masuzawa T (2004) An index to evaluate the wear resistance of the electrode in micro-EDM. J Mater Process Technol 149(1–3):304–309

    Article  Google Scholar 

  9. Tan PC, Yeo SH, Tan YV (2008) Effects of nanopowder additives in micro-electrical discharge machining. Int J Precision Eng Manuf 9(3):22–26

    Google Scholar 

  10. Chen SL, Lin MH, Huang GX, Wang CC (2014) Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl Surf Sci 311:47–53

    Article  Google Scholar 

  11. Raju L, Sanghvi VS, Somashekhar SH, Singaperumal M (2014) Effect of process parameters on quality of micro holes machined on copper plate using developed μ-EDM setup. Appl Mech Mater 592–594:229–233

    Article  Google Scholar 

  12. Sivaprakasam P, Hariharan P, Gowri S (2014) Modeling and analysis of micro-WEDM process of titanium alloy (Ti-6Al-4V) using response surface approach. Eng Sci Technol Int J 17(4):227–235

    Article  Google Scholar 

  13. Kibria G, Sarkar B, Pradhan B, Bhattacharyya B (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4 V alloy. Int J Adv Manuf Technol 48(5–8):557–570

    Article  Google Scholar 

  14. Pradhan B, Masanta M, Sarkar B, Bhattacharyya B (2009) Investigation of electro-discharge micro-machining of titanium super alloy. Int J Adv Manuf Technol 41(11–12):1094–1106

    Article  Google Scholar 

  15. Meena VK, Azad MS (2012) Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy. Mater Manuf Processes 27(9):973–977

    Article  Google Scholar 

  16. Saleh T, Dahmardeh M, Nojeh A, Takahata K (2013) Dry micro-electro-discharge machining of carbon-nanotube forests using sulphur-hexafluoride. Carbon 52:288–295

    Article  Google Scholar 

  17. Liew PJ, Yan J, Kuriyagawa T (2013) Carbon nanofiber assisted micro electro discharge machining of reaction-bonded silicon carbide. J Mater Process Technol 213(7):1076–1087

    Article  Google Scholar 

  18. Natarajan N, Suresh P (2015) Experimental investigations on the microhole machining of 304 stainless steel by micro-EDM process using RC-type pulse generator. Int J Adv Manuf Technol 77(9–12):1741–1750

    Article  Google Scholar 

  19. Pandey AK, Tiwari K, Dubey AK (2014) Optimization of the process parameters in micro-electric discharge machining using response surface methodology and genetic algorithm. Int J Sci Res Publi 4(9):1–5

    Google Scholar 

  20. Jeong YH, HanYoo B, Lee HU, Min BK, Cho D-W, Lee SJ (2009) Deburring microfeatures using micro-EDM. J Mater Process Technol 209(14):5399–5406

    Article  Google Scholar 

  21. Yeo S, Murali M, Cheah H (2004) Magnetic field assisted micro electro-discharge machining. J Micromech Microeng 14(11):1526–1529

    Article  Google Scholar 

  22. Zhang L, Tong H, Li Y (2015) Precision machining of micro tool electrodes in micro EDM for drilling array micro holes. Precision Eng 39:100–106

    Article  Google Scholar 

  23. Jahan M, Wong Y, Rahman M (2012) Evaluation of the effectiveness of low frequency workpiece vibration in deep-hole micro-EDM drilling of tungsten carbide. J Manuf Processes 14(3):343–359

    Article  Google Scholar 

  24. Li MS, Chi GX, Wang ZL, Wang YK, Li D (2009) Micro electrical discharge machining of small hole in TC4 alloy. Trans Nonferrous Met Soc China 19:s434–s439

    Article  Google Scholar 

  25. Saxena KK, Agarwal S, Khare SK (2016) Surface characterization, material removal mechanism and material migration study of micro EDM process on conductive SiC. Procedia CIRP 42:179–184

    Article  Google Scholar 

  26. Fu Y, Miyamoto T, Natsu W, Zhao W, Yu Z (2016) Study on influence of electrode material on hole drilling in micro-EDM. Procedia CIRP 42:516–520

    Article  Google Scholar 

  27. Peng Z, Wang Z, Dong Y, Chen H (2010) Development of a reversible machining method for fabrication of microstructures by using micro-EDM. J Mater Process Technol 210(1):129–136

    Article  Google Scholar 

  28. Kunieda M, Lauwers B, Rajurkar K, Schumacher B (2005) Advancing EDM through fundamental insight into the process. CIRP Ann 54(2):64–87

    Article  Google Scholar 

  29. Masuzawa T (2000) State of the art of micromachining. CIRP Ann 49(2):473–488

    Article  Google Scholar 

  30. Wang AC, Yan BH, Li XT, Huang FY (2002) Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining. Int J Mach Tools Manuf 42(8):915–923

    Article  Google Scholar 

  31. Chern GL, Chuang Y (2006) Study on vibration-EDM and mass punching of micro-holes. J Mater Process Technol 180(1–3):151–160

    Article  Google Scholar 

  32. Endo T, Tsujimoto T, Mitsui K (2008) Study of vibration-assisted micro-EDM-the effect of vibration on machining time and stability of discharge. Precision Eng 32(4):269–277

    Article  Google Scholar 

  33. Prihandana GS, Mahardika M, Hamdi M, Wong Y, Mitsui K (2009) Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes-Taguchi approach. Int J Mach Tools Manuf 49(12–13):1035–1041

    Article  Google Scholar 

  34. Liew PJ, Yan J, Kuriyagawa T (2014) Fabrication of deep micro-holes in reaction-bonded SiC by ultrasonic cavitation assisted micro-EDM. Int J Mach Tools Manuf 76:13–20

    Article  Google Scholar 

  35. Yeo S, Tan P, Kurnia W (2007) Effects of powder additives suspended in dielectric on crater characteristics for micro electrical discharge machining. J Micromech Microeng 17(11):N91–N98

    Article  Google Scholar 

  36. Egashira K, Morita Y, Hattori Y (2010) Electrical discharge machining of submicron holes using ultrasmall-diameter electrodes. Precision Eng 34(1):139–144

    Article  Google Scholar 

  37. Han F, Yamada Y, Kawakami T, Kunieda M (2006) Experimental attempts of sub-micrometer order size machining using micro-EDM. Precision Eng 30(2):123–131

    Article  Google Scholar 

  38. Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7–8):1214–1228

    Article  Google Scholar 

  39. Zou R, Yu Z, Yan C, Li J, Liu X, Xu W (2018) Micro electrical discharge machining in nitrogen plasma jet. Precision Eng 51:198–207

    Article  Google Scholar 

  40. Allen D, Lecheheb A (1996) Micro electro-discharge machining of ink jet nozzles: optimum selection of material and machining parameters. J Mater Process Technol 58(1):53–66

    Article  Google Scholar 

  41. Son S, Lim H, Kumar A, Rahman M (2007) Influences of pulsed power condition on the machining properties in micro EDM. J Mater Process Technol 190(1–3):73–76

    Article  Google Scholar 

  42. Wang Y, Chen X, Wang Z, Dong S (2018) Fabrication of micro gear with intact tooth profile by micro wire electrical discharge machining. J Mater Process Technol 252:137–147

    Article  Google Scholar 

  43. Ferraris E, Reynaerts D, Lauwers B (2011) Micro-EDM process investigation and comparison performance of Al3O2 and ZrO2 based ceramic composites. CIRP Ann 60(1):235–238

    Article  Google Scholar 

  44. Huang H, Yan J (2016) Microstructural changes of Zr-based metallic glass during micro-electrical discharge machining and grinding by a sintered diamond tool. J Alloy Compd 688:14–21

    Article  Google Scholar 

  45. Liu HS, Yan BH, Chen CL, Huang FY (2006) Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining. Int J Mach Tools Manuf 46(1):80–87

    Article  Google Scholar 

  46. Yeo SH, Tan PC, Aligiri E, Tor SB, Loh NH (2009) Processing of zirconium-based bulk metallic glass (BMG) using micro electrical discharge machining (micro-EDM). Mater Manuf Processes 24(12):1242–1248

    Article  Google Scholar 

  47. Jahan M, Wong Y, Rahman M (2009) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J Mater Process Technol 209(8):3956–3967

    Article  Google Scholar 

  48. Dong S, Wang Z, Wang Y, Liu H (2016) An experimental investigation of enhancement surface quality of micro-holes for Be–Cu alloys using micro-EDM with multi-diameter electrode and different dielectrics. Procedia CIRP 42:257–262

    Article  Google Scholar 

  49. Bamberg E, Heamawatanachai S (2009) Orbital electrode actuation to improve efficiency of drilling micro-holes by micro-EDM. J Mater Process Technol 209(4):1826–1834

    Article  Google Scholar 

  50. Yukui W, Xiang C, Weimin G, Zhenlong W, Cheng G (2016) Complex rotary structures machined by micro-WEDM. Procedia CIRP 42:743–747

    Article  Google Scholar 

  51. Murray J, Zdebski D, Clare A (2012) Workpiece debris deposition on tool electrodes and secondary discharge phenomena in micro-EDM. J Mater Process Technol 212(7):1537–1547

    Article  Google Scholar 

  52. Fu X, Zhang Y, Zhang Q, Zhang J (2013) Research on piezoelectric self-adaptive micro-EDM. Procedia CIRP 6:303–308

    Article  Google Scholar 

  53. Trych A (2013) Further study of carbon fibres electrodes in micro electrical discharge machining. Procedia CIRP 6:309–313

    Article  Google Scholar 

  54. Plaza S, Sanchez JA, Perez E, Gil R, Izquierdo B, Ortega N, Pombo I (2014) Experimental study on micro EDM-drilling of Ti6Al4V using helical electrode. Precision Eng 38(4):821–827

    Article  Google Scholar 

  55. Maradia U, Knaak R, Dal Busco W, Boccadoro M, Wegener K (2015) A strategy for low electrode wear in meso–micro-EDM. Precision Eng 42:302–310

    Article  Google Scholar 

  56. Koyano T, Sugata Y, Hosokawa A, Furumoto T (2017) Micro electrical discharge machining using high electric resistance electrodes. Precision Eng 47:480–486

    Article  Google Scholar 

  57. Mlynarczyk P, Krajcarz D, Bańkowski D (2017) The selected properties of the micro electrical discharge alloying process using tungsten electrode on aluminium. Procedia Eng 192:603–608

    Article  Google Scholar 

  58. Qian J, Yang F, Wang J, Lauwers B, Reynaerts D (2015) Material removal mechanism in low-energy micro-EDM process. CIRP Ann 64(1):225–228

    Article  Google Scholar 

  59. Pellicer N, Ciurana J, Ozel T (2009) Influence of process parameters and electrode geometry on feature micro-accuracy in electro discharge machining of tool steel. Mater Manuf Processes 24(12):1282–1289

    Article  Google Scholar 

  60. Natarajan N, Arunachalam R (2011) Optimization of micro-EDM with multiple performance characteristics using Taguchi method and Grey relational analysis. J Sci Ind Res 70(7):500–505

    Google Scholar 

  61. Ay M, Çaydaş U, Hasçalık A (2013) Optimization of micro-EDM drilling of Inconel 718 superalloy. Int J Adv Manuf Technol 66(5–8):1015–1023

    Article  Google Scholar 

  62. Tiwary A, Pradhan B, Bhattacharyya B (2014) Application of multi-criteria decision making methods for selection of micro-EDM process parameters. Adv Manuf 2(3):251–258

    Article  Google Scholar 

  63. Manivannan R, Kumar MP (2016) Multi-response optimization of micro-EDM process parameters on AISI304 steel using TOPSIS. J Mech Sci Technol 30(1):137–144

    Article  Google Scholar 

  64. Bhosle RB, Sharma S (2017) Multi-performance optimization of micro-EDM drilling process of Inconel 600 alloy. Mater Today Proc 4(2):1988–1997

    Article  Google Scholar 

  65. Manivannan R, Kumar MP (2017) Multi-attribute decision-making of cryogenically cooled micro-EDM drilling process parameters using TOPSIS method. Mater Manuf Processes 32(2):209–215

    Article  Google Scholar 

  66. Sapkal SU, Jagtap PS (2018) Optimization of micro EDM drilling process parameters for Titanium Alloy by rotating electrode. Procedia Manuf 20:119–126

    Article  Google Scholar 

  67. Pradhan B, Bhattacharyya B (2009) Modelling of micro-electrodischarge machining during machining of titanium alloy Ti-6Al-4V using response surface methodology and artificial neural network algorithm. Proc Inst Mech Eng, Part B: J Eng Manuf 223(6):683–693

    Article  Google Scholar 

  68. Somashekhar K, Ramachandran N, Mathew J (2009) Modeling and optimization of process parameters in micro Wire EDM by Genetic Algorithm. Adv Mater Res 76–78:566–570

    Article  Google Scholar 

  69. Zhang L, Jia Z, Wang F, Liu W (2010) A hybrid model using supporting vector machine and multi-objective genetic algorithm for processing parameters optimization in micro-EDM. Int J Adv Manuf Technol 51(5–8):575–586

    Article  Google Scholar 

  70. Somashekhar K, Ramachandran N, Mathew J (2010) Optimization of material removal rate in micro-EDM using artificial neural network and genetic algorithms. Mater Manuf Processes 25(6):467–475

    Article  Google Scholar 

  71. Somashekhar K, Mathew J, Ramachandran N (2011) Multi-objective optimization of micro wire electric discharge machining parameters using grey relational analysis with Taguchi method. Proc Inst Mech Eng, Part C: J Mech Eng Sci 225(7):1742–1753

    Article  Google Scholar 

  72. Somashekhar K, Mathew J, Ramachandran N (2012) A feasibility approach by simulated annealing on optimization of micro-wire electric discharge machining parameters. Int J Adv Manuf Technol 61(9–12):1209–1213

    Article  Google Scholar 

  73. Nirala C, Reddy B, Saha P (2013) Optimization of process parameters in micro electro-discharge drilling [micro EDM-drilling]: a Taguchi approach. Adv Mater Res 622–623:30–34

    Google Scholar 

  74. Sivaprakasam P, Hariharan P, Gowri S (2013) Optimization of micro-WEDM process of aluminum matrix composite (A413-B4C): a response surface approach. Mater Manuf Processes 28(12):1340–1347

    Article  Google Scholar 

  75. Jithin S, Kuriachen B, Mathew J (2013) Multi-objective optimization of micro ED milling of Ti-6Al-4V using genetic algorithm (GA). In: International conference on precision, meso, micro and nano engineering (COPEN 2013), India, pp 157–163, 13–15 Dec 2013

    Google Scholar 

  76. Suganthi XH, Natarajan U, Sathiyamurthy S, Chidambaram K (2013) Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model. Int J Adv Manuf Technol 68:339–347

    Article  Google Scholar 

  77. Maity K, Mishra H (2016) ANN modelling and Elitist teaching learning approach for multi-objective optimization of µ-EDM. J Intell Manuf https://doi.org/10.1007/s10845-016-1193-2

    Article  Google Scholar 

  78. Meena VK, Azad MS, Singh S, Singh N (2017) Micro-EDM multiple parameter optimization for Cp titanium. Int J Adv Manuf Technol 89(1–4):897–904

    Article  Google Scholar 

  79. Upadhyay A, Prakash V, Sharma V (2018) Optimizing material removal rate using artificial neural network for micro-EDM. In: Design and optimization of mechanical engineering products, IGI Global, pp 209–233

    Google Scholar 

  80. Abidi MH, Al-Ahmari AM, Umer U, Rasheed MS (2018) Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using MOGA-II. Measurement 125:336–349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boral, S., Sidhu, S.S., Chatterjee, P., Chakraborty, S., Gugaliya, A. (2019). Multi-response Optimization of Micro-EDM Processes: A State-of-the-Art Review. In: Kibria, G., Jahan, M., Bhattacharyya, B. (eds) Micro-electrical Discharge Machining Processes. Materials Forming, Machining and Tribology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3074-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3074-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3073-5

  • Online ISBN: 978-981-13-3074-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics