Skip to main content

The Effect of Nanoparticles on the Cluster Size Distributions of Activated EGFR Measured with Photobleaching Image Correlation Spectroscopy

  • Chapter
  • First Online:
Biochemical and Biophysical Roles of Cell Surface Molecules

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1112))

Abstract

The epidermal growth factor receptor (EGFR) is an important cell surface receptor in normal physiology and disease. Recent work has shown that EGF-gold nanoparticle conjugates can influence cell behaviour, but the underlying mechanism at the receptor quaternary structural level remains poorly understood.

In the present work, the cluster density and cluster size of activated (phosphorylated) EGFR clusters in HeLa cells were determined with photobleaching image correlation spectroscopy. EGFR activation was probed via immunofluorescence-detected phosphorylation of tyrosines (pY-mAb) located in the kinase domain of EGFR (Y845) and at the EGFR cytoplasmic tail (Y1173). Cell activation was probed via nuclear extracellular-regulated kinase (ERK) phosphorylation. The cluster size of activated EGFR was 1.3–2.4 pY-mAb/cluster in unstimulated HeLa cells. EGF or nanorod treatment led to an increase in EGFR oligomers containing multiple phosphotyrosines (>2 phosphotyrosines per EGFR oligomer, average cluster size range = 3–5 pY-mAb/cluster) which paralleled increases in nuclear p-ERK. In contrast, EGF-nanorods decreased the contribution from higher-order phospho-clusters and decreased nuclear p-ERK relative to the nanorod control. These studies provide direct evidence that targeted nanotechnology can manipulate receptor organization and lead to changes in receptor activation and subsequent signalling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abulrob A, Lu Z, Baumann E et al (2010) Nanoscale imaging of epidermal growth factor receptor clustering: effects of inhibitors. J Biol Chem 285:3145–3156

    Article  CAS  Google Scholar 

  • Berkers JA, van Bergen en Henegouwen PM, Boonstra J (1991) Three classes of epidermal growth factor receptors on HeLa cells. J Biol Chem 266:922–927

    CAS  PubMed  Google Scholar 

  • Ciccotosto GD, Kozer N, Chow TTY et al (2013) Aggregation distributions on cells determined by photobleaching image correlation spectroscopy. Biophys J 104:1056–1064

    Article  CAS  Google Scholar 

  • Clayton AHA, Orchard SG, Nice EC et al (2008) Predominance of activated EGFR higher-order oligomers on the cell surface. Growth Factors 26:316–324

    Article  CAS  Google Scholar 

  • Clayton AHA, Tavarnesi ML, Johns TG (2007) Unligated epidermal growth factor receptor forms higher order oligomers within microclusters on A431 cells that are sensitive to tyrosine kinase inhibitor binding. Biochemistry 46:4589–4597

    Article  CAS  Google Scholar 

  • Clayton AHA, Walker F, Orchard SG et al (2005) Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor – a multidimensional microscopy analysis. J Biol Chem 280:30392–30399

    Article  CAS  Google Scholar 

  • Crow MJ, Seekell K, Ostrander JH et al (2011) Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles. ACS Nano 11:8532–8540

    Article  Google Scholar 

  • Delcassian D, Depoil D, Rudnicka D et al (2013) Nanoscale ligand spacing influences receptor triggering in T cells and NK cells. Nano Lett 13:5608–5614

    Article  CAS  Google Scholar 

  • Dreaden EC, Alkilany AM, Huang X et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  CAS  Google Scholar 

  • Flynn JF, Wong C, Wu J (2009) Anti-EGFR therapy: mechanism and advances in clinical efficacy in breast cancer. J Oncol . https://doi.org/10.1155/2009/526963

    Article  Google Scholar 

  • Huang Y, Bharill S, Karandur D et al (2016) Molecular basis for multimerization in the activation of the epidermal growth factor receptor. elife 5:e14107. https://doi.org/10.7554/eLife.14107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichinose J, Muratab M, Yanagida T et al (2004) EGF signalling amplification induced by dynamic clustering of EGFR. Biochem Biophys Res Comm 324:1143–1149

    Article  CAS  Google Scholar 

  • Kolch W, Pitt A (2010) Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 10:618–629

    Article  CAS  Google Scholar 

  • Kovacs E, Das R, Wang Q et al (2015) Analysis of the role of the C-terminal tail in the regulation of the epidermal growth factor receptor. J Mol Cell Biol 35:3083–3102

    Article  CAS  Google Scholar 

  • Kozer N, Barua D, Orchard S et al (2013) Exploring higher-order EGFR oligomerisation and phosphorylation – a combined experimental and theoretical approach. Mol BioSyst 9:1849–1863

    Article  CAS  Google Scholar 

  • Kozer N, Barua D, Henderson C et al (2014) Recruitment of the adaptor protein Grb2 to EGFR tetramers. Biochemistry 53:2594–2604

    Article  CAS  Google Scholar 

  • Lajevardipour A, Chon JWM, Clayton AHA et al (2015) Complex aggregation distributions by photobleaching image correlation spectroscopy. AIMS Biophys 2:1–7

    Article  CAS  Google Scholar 

  • Needham SR, Roberts SK, Arkhipov A et al (2016) EGFR oligomerization organizes kinase-active dimers into competent signalling platforms. Nat Commun 7:13307. https://doi.org/10.1038/ncomms13307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyarzún DA, Bramhall JL, Lopez-Caamal F et al (2014) The EGFR demonstrates linear signal transmission. Integr Biol 6:736–742

    Article  Google Scholar 

  • Paviolo C, Chon JWM, Clayton AHA (2015) Inhibiting EGFR clustering and cell proliferation with gold nanoparticles. Small 11:1638–1643

    Article  CAS  Google Scholar 

  • Peckys DB, Baudoin J, Eder M et al (2013) Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci Rep 3:2626

    Article  Google Scholar 

  • Rauch J, Kolch W, Mahmoudi M (2012) Cell type-specific activation of AKT and ERK signaling pathways by small negatively-charged magnetic nanoparticles. Sci Rep 2:1–9

    Article  Google Scholar 

  • Shaw A, Lundin V, Petrova E et al (2014) Spatial control of membrane receptor function using ligand nanocalipers. Nat Meth 11:841–846

    Article  CAS  Google Scholar 

  • Tice DA, Biscardi JS, Nickles AL et al (1999) Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. PNAS 96:1415–1420

    Article  CAS  Google Scholar 

  • Wang Y, Gao J, Guo X et al (2014) Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Res 24:959–976

    Article  CAS  Google Scholar 

  • Wilson KJ, Gilmore JL, Foley J et al (2009) Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol Ther 122:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AHAC and JWMC gratefully acknowledge the Australian Research Council for funding this research (Grant Number: DP130101475).

Disclosure

The author reports no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James W. M. Chon or Andrew H. A. Clayton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paviolo, C., Chon, J.W.M., Clayton, A.H.A. (2018). The Effect of Nanoparticles on the Cluster Size Distributions of Activated EGFR Measured with Photobleaching Image Correlation Spectroscopy. In: Chattopadhyay, K., Basu, S. (eds) Biochemical and Biophysical Roles of Cell Surface Molecules. Advances in Experimental Medicine and Biology, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-13-3065-0_4

Download citation

Publish with us

Policies and ethics