Skip to main content

Group I Metabotropic Glutamate Receptors (mGluRs): Ins and Outs

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1112))

Abstract

Glutamate is a nonessential amino acid, known to act as a major excitatory neurotransmitter in the central nervous system. Glutamate transduces its signal by activating two types of receptors, viz., ionotropic glutamate receptors and metabotropic glutamate receptors (mGluRs). mGluR1 and mGluR5 are members of the group I mGluR family, and they belong to the G-protein-coupled receptor (GPCR) family. These receptors are involved in various forms of synaptic plasticity including learning and memory. Similar to many other GPCRs, trafficking plays a critical role in controlling the spatiotemporal localization of these receptors on the cell surface, which is critical for the normal ligand/receptor interaction. Improper targeting of GPCRs results in aberrant signaling, which often leads to various diseases. Trafficking also regulates the activity of these receptors. Thus, inappropriate trafficking of these receptors might have pathological consequences. Group I mGluRs have been implicated in various neuropsychiatric disorders like Fragile X syndrome, autism, etc. In this review, we discuss the current understanding of group I mGluR trafficking in the central nervous system and its physiological importance.

Author contributed equally with all other contributors.Prabhat Kumar Mahato, Namrata Ramsakha, Prachi Ojha, Ravinder Gulia and Rohan Sharma

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul-Ghani MA, Valiante TA, Carlen PL, Pennefather PS (1996) Metabotropic glutamate receptors coupled to IP3 production mediate inhibition of IAHP in rat dentate granule neurons. J Neurophysiol 76:2691–2700

    Article  CAS  Google Scholar 

  • Adams CL, Cowen MS, Short JL, Lawrence AJ (2008) Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats. Int J Neuropsychopharmacol 11:229–241. https://doi.org/10.1017/S1461145707007845

    Article  CAS  PubMed  Google Scholar 

  • Aramori I, Nakanishi S (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells. Neuron 8:757–765

    Article  CAS  Google Scholar 

  • Barak LS, Tiberi M, Freedman NJ, Kwatra MM, Lefkowitz RJ, Caron MG (1994) A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J Biol Chem 269:2790–2795

    CAS  PubMed  Google Scholar 

  • Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201–214. https://doi.org/10.1016/j.neuron.2008.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    Article  CAS  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377. https://doi.org/10.1016/j.tins.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  • Besheer J, Grondin JJ, Cannady R, Sharko AC, Faccidomo S, Hodge CW (2010) Metabotropic glutamate receptor 5 activity in the nucleus accumbens is required for the maintenance of ethanol self-administration in a rat genetic model of high alcohol intake. Biol Psychiatry 67:812–822. https://doi.org/10.1016/j.biopsych.2009.09.016

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar A, Willins DL, Gray JA, Woods J, Benovic JL, Roth BL (2001) The dynamin-dependent, arrestin-independent internalization of 5-hydroxytryptamine 2A (5-HT2A) serotonin receptors reveals differential sorting of arrestins and 5-HT2A receptors during endocytosis. J Biol Chem 276:8269–8277. https://doi.org/10.1074/jbc.M006968200

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya M, Babwah AV, Godin C, Anborgh PH, Dale LB, Poulter MO, Ferguson SS (2004) Ral and phospholipase D2-dependent pathway for constitutive metabotropic glutamate receptor endocytosis. J Neurosci: Off J Soc Neurosci 24:8752–8761. https://doi.org/10.1523/JNEUROSCI.3155-04.2004

    Article  CAS  Google Scholar 

  • Bhattacharyya S (2016) Inside story of Group I Metabotropic Glutamate Receptors (mGluRs). Int J Biochem Cell Biol 77:205–212. https://doi.org/10.1016/j.biocel.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  • Bird MK, Kirchhoff J, Djouma E, Lawrence AJ (2008) Metabotropic glutamate 5 receptors regulate sensitivity to ethanol in mice. Int J Neuropsychopharmacol 11:765–774. https://doi.org/10.1017/S1461145708008572

    Article  CAS  PubMed  Google Scholar 

  • Black JB, Premont RT, Daaka Y (2016) Feedback regulation of G protein-coupled receptor signaling by GRKs and arrestins. Semin Cell Dev Biol 50:95–104. https://doi.org/10.1016/j.semcdb.2015.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blednov YA, Harris RA (2008) Metabotropic glutamate receptor 5 (mGluR5) regulation of ethanol sedation, dependence and consumption: relationship to acamprosate actions. Int J Neuropsychopharmacol 11:775–793. https://doi.org/10.1017/S1461145708008584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown WT, Friedman E, Jenkins EC, Brooks J, Wisniewski K, Raguthu S, French JH (1982a) Association of fragile X syndrome with autism. Lancet 1:100

    Article  CAS  Google Scholar 

  • Brown WT, Jenkins EC, Friedman E, Brooks J, Wisniewski K, Raguthu S, French J (1982b) Autism is associated with the fragile-X syndrome. J Autism Dev Disord 12:303–308

    Article  CAS  Google Scholar 

  • Buxbaum JD, Oishi M, Chen HI, Pinkas-Kramarski R, Jaffe EA, Gandy SE, Greengard P (1992) Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci U S A 89:10075–10078

    Article  CAS  Google Scholar 

  • Caporaso GL, Gandy SE, Buxbaum JD, Ramabhadran TV, Greengard P (1992) Protein phosphorylation regulates secretion of Alzheimer beta/A4 amyloid precursor protein. Proc Natl Acad Sci U S A 89:3055–3059

    Article  CAS  Google Scholar 

  • Catania MV, Landwehrmeyer GB, Testa CM, Standaert DG, Penney JB Jr, Young AB (1994) Metabotropic glutamate receptors are differentially regulated during development. Neuroscience 61:481–495

    Article  CAS  Google Scholar 

  • Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 33:18–41. https://doi.org/10.1038/sj.npp.1301559

    Article  Google Scholar 

  • Claing A, Laporte SA, Caron MG, Lefkowitz RJ (2002) Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Progress in neurobiology 66:61–79

    Article  CAS  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237

    Article  CAS  Google Scholar 

  • Cozzoli DK et al (2012) Nucleus accumbens mGluR5-associated signaling regulates binge alcohol drinking under drinking-in-the-dark procedures. Alcohol Clin Exp Res 36:1623–1633. https://doi.org/10.1111/j.1530-0277.2012.01776.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cozzoli DK et al (2009) Binge drinking upregulates accumbens mGluR5-Homer2-PI3K signaling: functional implications for alcoholism. J Neurosci: Off J Soc Neurosci 29:8655–8668. https://doi.org/10.1523/JNEUROSCI.5900-08.2009

    Article  CAS  Google Scholar 

  • Dale LB, Bhattacharya M, Anborgh PH, Murdoch B, Bhatia M, Nakanishi S, Ferguson SS (2000) G protein-coupled receptor kinase-mediated desensitization of metabotropic glutamate receptor 1A protects against cell death. J Biol Chem 275:38213–38220

    Article  CAS  Google Scholar 

  • Dale LB, Bhattacharya M, Seachrist JL, Anborgh PH, Ferguson SS (2001) Agonist-stimulated and tonic internalization of metabotropic glutamate receptor 1a in human embryonic kidney 293 cells: agonist-stimulated endocytosis is beta-arrestin1 isoform-specific. Mol Pharmacol 60:1243–1253

    Article  CAS  Google Scholar 

  • Dhami GK, Anborgh PH, Dale LB, Sterne-Marr R, Ferguson SS (2002) Phosphorylation-independent regulation of metabotropic glutamate receptor signaling by G protein-coupled receptor kinase 2. J Biol Chem 277:25266–25272. https://doi.org/10.1074/jbc.M203593200

    Article  CAS  PubMed  Google Scholar 

  • Dhami GK, Ferguson SS (2006) Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis. Pharmacol Ther 111:260–271

    Article  CAS  Google Scholar 

  • Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of fragile X syndrome in mice. Neuron 56:955–962

    Article  CAS  Google Scholar 

  • Drake MT, Shenoy SK, Lefkowitz RJ (2006) Trafficking of G protein-coupled receptors. Circ Res 99:570–582

    Article  CAS  Google Scholar 

  • Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    CAS  PubMed  Google Scholar 

  • Ferguson SS, Barak LS, Zhang J, Caron MG (1996) G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can J Physiol Pharmacol 74:1095–1110

    Article  CAS  Google Scholar 

  • Fourgeaud L, Bessis AS, Rossignol F, Pin JP, Olivo-Marin JC, Hemar A (2003) The metabotropic glutamate receptor mGluR5 is endocytosed by a clathrin-independent pathway. J Biol Chem 278:12222–12230

    Article  CAS  Google Scholar 

  • Francesconi A, Duvoisin RM (2000) Opposing effects of protein kinase C and protein kinase A on metabotropic glutamate receptor signaling: selective desensitization of the inositol trisphosphate/Ca2+ pathway by phosphorylation of the receptor-G protein-coupling domain. Proc Natl Acad Sci U S A 97:6185–6190

    Article  CAS  Google Scholar 

  • Francesconi A, Kumari R, Zukin RS (2009) Regulation of group I metabotropic glutamate receptor trafficking and signaling by the caveolar/lipid raft pathway. J Neurosci: Off J Soc Neurosci 29:3590–3602

    Article  CAS  Google Scholar 

  • Gaborik Z, Hunyady L (2004) Intracellular trafficking of hormone receptors. Trends Endocrinol Metabol: TEM 15:286–293. https://doi.org/10.1016/j.tem.2004.06.009

    Article  CAS  Google Scholar 

  • Gallagher SM, Daly CA, Bear MF, Huber KM (2004) Extracellular signal-regulated protein kinase activation is required for metabotropic glutamate receptor-dependent long-term depression in hippocampal area CA1. J Neurosci: Off J Soc Neurosci 24:4859–4864

    Article  CAS  Google Scholar 

  • Garland AM, Grady EF, Lovett M, Vigna SR, Frucht MM, Krause JE, Bunnett NW (1996) Mechanisms of desensitization and resensitization of G protein-coupled neurokinin1 and neurokinin2 receptors. Mol Pharmacol 49:438–446

    CAS  PubMed  Google Scholar 

  • Gerber U, Gee CE, Benquet P (2007) Metabotropic glutamate receptors: intracellular signaling pathways. Curr Opin Pharmacol 7:56–61. https://doi.org/10.1016/j.coph.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  • Gereau RW, Heinemann SF (1998) Role of protein kinase C phosphorylation in rapid desensitization of metabotropic glutamate receptor 5. Neuron 20:143–151

    Article  CAS  Google Scholar 

  • Gladding CM, Fitzjohn SM, Molnar E (2009) Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev 61:395–412

    Article  CAS  Google Scholar 

  • Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science 235:877–880

    Article  CAS  Google Scholar 

  • Gulia R, Sharma R, Bhattacharyya S (2017) A critical role for ubiquitination in the endocytosis of glutamate receptors. J Biol Chem 292:1426–1437. https://doi.org/10.1074/jbc.M116.752105

    Article  CAS  PubMed  Google Scholar 

  • Hanyaloglu AC, von Zastrow M (2008) Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 48:537–568. https://doi.org/10.1146/annurev.pharmtox.48.113006.094830

    Article  CAS  PubMed  Google Scholar 

  • Harris SW et al (2008) Autism profiles of males with fragile X syndrome. Am J Ment Retard: AJMR 113:427–438. https://doi.org/10.1352/2008.113:427-438

    Article  PubMed  Google Scholar 

  • Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287

    Article  CAS  Google Scholar 

  • Hou L, Antion MD, Hu D, Spencer CM, Paylor R, Klann E (2006) Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51:441–454

    Article  CAS  Google Scholar 

  • Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99:7746–7750

    Article  CAS  Google Scholar 

  • Iacovelli L et al (2003) Role of G protein-coupled receptor kinase 4 and beta-arrestin 1 in agonist-stimulated metabotropic glutamate receptor 1 internalization and activation of mitogen-activated protein kinases. J Biol Chem 278:12433–12442. https://doi.org/10.1074/jbc.M203992200

    Article  CAS  PubMed  Google Scholar 

  • Kelly E, Bailey CP, Henderson G (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153(Suppl 1):S379–S388

    CAS  PubMed  Google Scholar 

  • Kim CH, Lee J, Lee JY, Roche KW (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res 86:1–10

    Article  CAS  Google Scholar 

  • Krupnick JG, Benovic JL (1998) The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 38:289–319

    Article  CAS  Google Scholar 

  • Lee JH et al (2008) Calmodulin dynamically regulates the trafficking of the metabotropic glutamate receptor mGluR5. Proc Natl Acad Sci U S A 105:12575–12580

    Article  CAS  Google Scholar 

  • Lee RK, Wurtman RJ, Cox AJ, Nitsch RM (1995) Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Natl Acad Sci U S A 92:8083–8087

    Article  CAS  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517. https://doi.org/10.1126/science.1109237

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang Y, Ku L, Wilkinson KD, Warren ST, Feng Y (2001) The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res 29:2276–2283

    Article  CAS  Google Scholar 

  • Lovinger DM (1996) Interactions between ethanol and agents that act on the NMDA-type glutamate receptor. Alcohol Clin Exp Res 20:187A–191A

    Article  CAS  Google Scholar 

  • Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8:1488–1500

    Article  CAS  Google Scholar 

  • Luscher C, Huber KM (2010) Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65:445–459. https://doi.org/10.1016/j.neuron.2010.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465

    CAS  PubMed  Google Scholar 

  • Mahato PK, Pandey S, Bhattacharyya S (2015) Differential effects of protein phosphatases in the recycling of metabotropic glutamate receptor 5. Neuroscience 306:138–150

    Article  CAS  Google Scholar 

  • Mannaioni G, Marino MJ, Valenti O, Traynelis SF, Conn PJ (2001) Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci: Off J Soc Neurosci 21:5925–5934

    Article  CAS  Google Scholar 

  • Marchese A, Benovic JL (2001) Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem 276:45509–45512. https://doi.org/10.1074/jbc.C100527200

    Article  CAS  PubMed  Google Scholar 

  • Minakami R, Iida K, Hirakawa N, Sugiyama H (1995) The expression of two splice variants of metabotropic glutamate receptor subtype 5 in the rat brain and neuronal cells during development. J Neurochem 65:1536–1542

    Article  CAS  Google Scholar 

  • Minami K, Gereau RW, Minami M, Heinemann SF, Harris RA (1998) Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes. Mol Pharmacol 53:148–156

    Article  CAS  Google Scholar 

  • Mundell SJ, Matharu AL, Pula G, Roberts PJ, Kelly E (2001) Agonist-induced internalization of the metabotropic glutamate receptor 1a is arrestin- and dynamin-dependent. J Neurochem 78:546–551

    Article  CAS  Google Scholar 

  • Mundell SJ, Pula G, Carswell K, Roberts PJ, Kelly E (2003) Agonist-induced internalization of metabotropic glutamate receptor 1A: structural determinants for protein kinase C- and G protein-coupled receptor kinase-mediated internalization. J Neurochem 84:294–304

    Article  CAS  Google Scholar 

  • Mundell SJ, Pula G, More JC, Jane DE, Roberts PJ, Kelly E (2004) Activation of cyclic AMP-dependent protein kinase inhibits the desensitization and internalization of metabotropic glutamate receptors 1a and 1b. Mol Pharmacol 65:1507–1516. https://doi.org/10.1124/mol.65.6.1507

    Article  CAS  PubMed  Google Scholar 

  • Neve RL, Finch EA, Dawes LR (1988) Expression of the Alzheimer amyloid precursor gene transcripts in the human brain. Neuron 1:669–677

    Article  CAS  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  Google Scholar 

  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258:304–307

    Article  CAS  Google Scholar 

  • Obara I et al (2009) Differential effects of chronic ethanol consumption and withdrawal on homer/glutamate receptor expression in subregions of the accumbens and amygdala of P rats. Alcohol Clin Exp Res 33:1924–1934. https://doi.org/10.1111/j.1530-0277.2009.01030.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka A, Takashima S (1997) Induction of cyclo-oxygenase 2 in brains of patients with Down’s syndrome and dementia of Alzheimer type: specific localization in affected neurones and axons. Neuroreport 8:1161–1164

    Article  CAS  Google Scholar 

  • Oka A, Takashima S (1999) The up-regulation of metabotropic glutamate receptor 5 (mGluR5) in Down’s syndrome brains. Acta Neuropathol 97:275–278

    Article  CAS  Google Scholar 

  • Pandey S, Mahato PK, Bhattacharyya S (2014) Metabotropic glutamate receptor 1 recycles to the cell surface in protein phosphatase 2A-dependent manner in non-neuronal and neuronal cell lines. J Neurochem 131:602–614. https://doi.org/10.1111/jnc.12930

    Article  CAS  PubMed  Google Scholar 

  • Parkitna JR et al (2013) Novelty-seeking behaviors and the escalation of alcohol drinking after abstinence in mice are controlled by metabotropic glutamate receptor 5 on neurons expressing dopamine d1 receptors. Biol Psychiatry 73:263–270. https://doi.org/10.1016/j.biopsych.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  • Peavy RD, Conn PJ (1998) Phosphorylation of mitogen-activated protein kinase in cultured rat cortical glia by stimulation of metabotropic glutamate receptors. Journal of neurochemistry 71:603–612

    Article  CAS  Google Scholar 

  • Penagarikano O, Mulle JG, Warren ST (2007) The pathophysiology of fragile x syndrome. Annu Rev Genomics Hum Genet 8:109–129. https://doi.org/10.1146/annurev.genom.8.080706.092249

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  CAS  Google Scholar 

  • Pippig S, Andexinger S, Lohse MJ (1995) Sequestration and recycling of beta 2-adrenergic receptors permit receptor resensitization. Mol Pharmacol 47:666–676

    CAS  PubMed  Google Scholar 

  • Pitcher JA, Payne ES, Csortos C, DePaoli-Roach AA, Lefkowitz RJ (1995) The G-protein-coupled receptor phosphatase: a protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proc Natl Acad Sci U S A 92:8343–8347

    Article  CAS  Google Scholar 

  • Pula G, Mundell SJ, Roberts PJ, Kelly E (2004) Agonist-independent internalization of metabotropic glutamate receptor 1a is arrestin- and clathrin-dependent and is suppressed by receptor inverse agonists. J Neurochem 89:1009–1020. https://doi.org/10.1111/j.1471-4159.2004.02387.x

    Article  CAS  PubMed  Google Scholar 

  • Rapacciuolo A, Suvarna S, Barki-Harrington L, Luttrell LM, Cong M, Lefkowitz RJ, Rockman HA (2003) Protein kinase A and G protein-coupled receptor kinase phosphorylation mediates beta-1 adrenergic receptor endocytosis through different pathways. J Biol Chem 278:35403–35411. https://doi.org/10.1074/jbc.M305675200

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro FM, Ferreira LT, Paquet M, Cregan T, Ding Q, Gros R, Ferguson SS (2009) Phosphorylation-independent regulation of metabotropic glutamate receptor 5 desensitization and internalization by G protein-coupled receptor kinase 2 in neurons. J Biol Chem 284:23444–23453. https://doi.org/10.1074/jbc.M109.000778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano C, Van den Pol AN, OMalley KL (1996) Enhanced early developmental expression of the metabotropic glutamate receptor mGluR5 in rat brain: protein, mRNA splice variants, and regional distribution. J Comp Neurol 367:403–412

    Article  CAS  Google Scholar 

  • Ronesi JA, Huber KM (2008) Metabotropic glutamate receptors and fragile x mental retardation protein: partners in translational regulation at the synapse. Sci Signal 1:pe6

    Article  Google Scholar 

  • Sallese M et al (2000) The G-protein-coupled receptor kinase GRK4 mediates homologous desensitization of metabotropic glutamate receptor 1. Faseb J 14:2569–2580

    Article  CAS  Google Scholar 

  • Schumann G et al (2008) Systematic analysis of glutamatergic neurotransmission genes in alcohol dependence and adolescent risky drinking behavior. Arch Gen Psychiatry 65:826–838. https://doi.org/10.1001/archpsyc.65.7.826

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313. https://doi.org/10.1126/science.1063866

    Article  CAS  PubMed  Google Scholar 

  • Shigemoto R, Nakanishi S, Mizuno N (1992) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. J Comp Neurol 322:121–135

    Article  CAS  Google Scholar 

  • Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 163:53–57

    Article  CAS  Google Scholar 

  • Sibley DR, Lefkowitz RJ (1985) Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317:124–129

    Article  CAS  Google Scholar 

  • Sidhpura N, Weiss F, Martin-Fardon R (2010) Effects of the mGlu2/3 agonist LY379268 and the mGlu5 antagonist MTEP on ethanol seeking and reinforcement are differentially altered in rats with a history of ethanol dependence. Biol Psychiatry 67:804–811. https://doi.org/10.1016/j.biopsych.2010.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair CM, Cleva RM, Hood LE, Olive MF, Gass JT (2012) mGluR5 receptors in the basolateral amygdala and nucleus accumbens regulate cue-induced reinstatement of ethanol-seeking behavior. Pharmacol Biochem Behav 101:329–335. https://doi.org/10.1016/j.pbb.2012.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slack BE, Nitsch RM, Livneh E, Kunz GM Jr, Breu J, Eldar H, Wurtman RJ (1993) Regulation by phorbol esters of amyloid precursor protein release from Swiss 3T3 fibroblasts overexpressing protein kinase C alpha. J Biol Chem 268:21097–21101

    CAS  PubMed  Google Scholar 

  • Sorensen SD, Conn PJ (2003) G protein-coupled receptor kinases regulate metabotropic glutamate receptor 5 function and expression. Neuropharmacology 44:699–706

    Article  CAS  Google Scholar 

  • Szumlinski KK, Ary AW, Lominac KD (2008) Homers regulate drug-induced neuroplasticity: implications for addiction. Biochem Pharmacol 75:112–133. https://doi.org/10.1016/j.bcp.2007.07.031

    Article  CAS  PubMed  Google Scholar 

  • Szumlinski KK et al (2005) Homer2 is necessary for EtOH-induced neuroplasticity. J Neurosci: Off J Soc Neurosci 25:7054–7061. https://doi.org/10.1523/JNEUROSCI.1529-05.2005

    Article  CAS  Google Scholar 

  • Terrell J, Shih S, Dunn R, Hicke L (1998) A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1:193–202

    Article  CAS  Google Scholar 

  • Trivedi RR, Bhattacharyya S (2012) Constitutive internalization and recycling of metabotropic glutamate receptor 5 (mGluR5). Biochem Biophys Res Commun 427:185–190

    Article  CAS  Google Scholar 

  • Tu JC et al (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21:717–726

    Article  CAS  Google Scholar 

  • Urizar NL, Yang Z, Edenberg HJ, Davis RL (2007) Drosophila homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance. J Neurosci:Off J Soc Neurosci 27:4541–4551. https://doi.org/10.1523/JNEUROSCI.0305-07.2007

    Article  CAS  Google Scholar 

  • Wang H, Zhuo M (2012) Group I metabotropic glutamate receptor-mediated gene transcription and implications for synaptic plasticity and diseases. Front Pharmacol 3:189. https://doi.org/10.3389/fphar.2012.00189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winder DG, Conn PJ (1996) Roles of metabotropic glutamate receptors in glial function and glial-neuronal communication. J Neurosci Res 46:131–137

    Article  CAS  Google Scholar 

  • Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down’s syndrome. Ann Neurol 17:278–282. https://doi.org/10.1002/ana.410170310

    Article  CAS  PubMed  Google Scholar 

  • Yao HH, Ding JH, Zhou F, Wang F, Hu LF, Sun T, Hu G (2005) Enhancement of glutamate uptake mediates the neuroprotection exerted by activating group II or III metabotropic glutamate receptors on astrocytes. J Neurochem 92:948–961

    Article  CAS  Google Scholar 

  • Yu SS, Lefkowitz RJ, Hausdorff WP (1993) Beta-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J Biol Chem 268:337–341

    CAS  PubMed  Google Scholar 

  • Zhang J, Ferguson SS, Barak LS, Menard L, Caron MG (1996) Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J Biol Chem 271:18302–18305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samarjit Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahato, P.K., Ramsakha, N., Ojha, P., Gulia, R., Sharma, R., Bhattacharyya, S. (2018). Group I Metabotropic Glutamate Receptors (mGluRs): Ins and Outs. In: Chattopadhyay, K., Basu, S. (eds) Biochemical and Biophysical Roles of Cell Surface Molecules. Advances in Experimental Medicine and Biology, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-13-3065-0_12

Download citation

Publish with us

Policies and ethics