Symmetric Travelling Salesman Problem

Some New Algorithmic Possibilities
  • Tiru ArthanariEmail author
  • Kun Qian
Part of the Indian Statistical Institute Series book series (INSIS)


The Symmetric Travelling Salesman Problem (STSP) has many different formulations. The most famous formulation is the standard formulation by Dantzig, Fulkerson and Johnson (Oper Res 2(4):393–410, 1954, [22]), which has \(n(n - 1)\) variables and \(2n - 1 + n - 1\) constraint. The focus of this research is on the multistage insertion formulation (Arthanari, Mathematical Programming - The State of the Art, 1983, [5]). The MI formulation is as tight as the standard formulation but only has \(n^3\) variables and \(n(n - 1)/2 + (n - 3)\) constraints. Integer gaps found in computational studies comparing different formulations indicate the superior performance of the MI-formulation. However, these comparisons have used generic LP solvers to solve the MI-formulation of STSP instances. Due to memory restrictions, problem sizes below 300 are only considered by them (Haerian, New insights on the multistage insertion formulation of the traveling salesman problem-polytopes, experiments, and algorithm, 2011, [30]) In this chapter, we outline a four-phase approach to solve this problem based on Arthanari’s (Atti della Accademia Peloritana dei Pericolanti- Classe di Scienze Fisiche, Matematiche e Naturali, 2017, [10]) finding that the MI relaxation is a special type of hypergraph minimum cost flow problem. Phase 1 adapts the HySimplex methods from Cambini et al. (Math Program 78(2):195–217, 1997, [15]) for the MI-relaxation problem of the STSP. Phase 2 is the implementation of a prototype from the algorithms in phase 1. Phase 3 consists of optimizing the prototype from phase 2. Phase 4 consists of computational experiments. This chapter focuses on phase 1 of this research.


Symmetrical travelling salesman problem Pedigree polytope Hypergraph simplex Multistage insertion formulation Compact formulations 


  1. 1.
    Agarwala, R.: A fast and scalable radiation hybrid map construction and integration strategy. Genome Res. 10(3), 350–364 (2000)CrossRefGoogle Scholar
  2. 2.
    Applegate, D., et al. Concorde Home.
  3. 3.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University press (2006)Google Scholar
  4. 4.
    Ardekani, L.H., Arthanari, T.S.: Traveling salesman problem and membership in pedigree polytope-a numerical illustration. Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 145–154. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  5. 5.
    Arthanari, T.S.: On the traveling salesman problem. Mathematical Programming - The State of the Art. Springer, Berlin (1983)Google Scholar
  6. 6.
    Arthanari, T.S.: Pedigree polytope is a combinatorial polytope. In: Mohan, S.R., Neogy, S.K. (eds.) Operations Research with Economic and Industrial Applications: Emerging Trends, pp. 1–17. Anamaya Publishers, New Delhi (2005)Google Scholar
  7. 7.
    Arthanari, T.S.: On pedigree polytopes and Hamiltonian cycles. Discret. Math. 306(14), 1474–1492 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Arthanari, T.S.: On the membership problem of pedigree polytope. In: Neogy, S.K., et al. (eds.) Mathematical Programming and Game Theory for Decision Making. World Scientific, Singapore (2008)Google Scholar
  9. 9.
    Arthanari, T.S.: Study of the pedigree polytope and a sufficiency condition for nonadjacency in the tour polytope. Discret. Optim. 10(3), 224–232 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Arthanari, T.S.: Symmetric traveling salesman problem and flows on hypergraphs - new algorithmic possibilities. In: Atti della Accademia Peloritana dei Pericolanti- Classe di Scienze Fisiche, Matematiche e Naturali, under consideration (2017)Google Scholar
  11. 11.
    Arthanari, T.S., Usha, M.: An alternate formulation of the symmetric traveling salesman problem and its properties. Discret. Appl. Math. 98(3), 173–190 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Arthanari, T.S., Usha, M.: On the equivalence of the multistage-insertion and cycle shrink formulations of the symmetric traveling salesman problem. Oper. Res. Lett. 29(3), 129–139 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bellman, R.E.: Dynamic programming treatment of the traveling salesman problem. J. Assoc. Comput. Mach. 9(1), 61–63 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Bondy, J., Murthy, U.S.R.: Graph Theory and Applications. Springer, Berlin (2008)Google Scholar
  15. 15.
    Cambini, R., Gallo, G., Scutellà, M.G.: Flows on hypergraphs. Math. Program. 78(2), 195–217 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Carr, R.D.: Polynomial separation procedures and facet determination for inequalities of the traveling salesman polytope. Ph.D. thesis, Carnegie Mellon University (1995)Google Scholar
  17. 17.
    Carr, R.D.: Separating over classes of TSP inequalities defined by 0 node-lifting in polynomial time. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 460–474. Springer (1996)Google Scholar
  18. 18.
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report DTIC Document (1976)Google Scholar
  19. 19.
    Claus, A.: A new formulation for the travelling salesman problem. SIAM J. Algebr. Discret. Methods 5(1), 21–25 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Cook, W.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2012)Google Scholar
  21. 21.
    Cunningham, W.H.: A network simplex method. Math. Program. 11(1), 105–116. ISSN: 1436-4646 (1976). Scholar
  22. 22.
    Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-saesman problem. Oper. Res. 2(4), 393–410 (1954)Google Scholar
  23. 23.
    Delí Amico, M., Maffioli, F., Martello, S. (eds.): Annotated Bibliographies in Combinatorial Optimization. Wiley-Interscience, Wiley, New York (1997)Google Scholar
  24. 24.
    Flood, Merrill M.: The traveling-salesman problem. Oper. Res. 4(1), 61–75 (1956)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Fox, K.R., Gavish, B., Graves, S.C.: An n-constraint formulation of the time-dependent travelling salesman problem. Oper. Res. 28(4), 1018–1021 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gavish, B., Graves, S.C.: The travelling salesman problem and related problems. Working Paper, OR-078-78, Operations Research Center, MIT, CambridgeGoogle Scholar
  27. 27.
    Godinho, M.T., Gouveia, L., Pesneau, P.: Natural and extended formulations for the time-dependent traveling salesman problem. Discret. Appl. Math. 164, 138–153 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Gouveia, L., Voß, S.: A classification of formulations for the (timedependent) traveling salesman problem. Eur. J. Oper. Res. 83(1), 69–82 (1995)zbMATHCrossRefGoogle Scholar
  29. 29.
    Gubb, M.: Flows, Insertions and Subtours Modelling the Travelling Salesman. Project Report, Part IV Project 2011. Department of Engineering Science, University of Auckland (2011)Google Scholar
  30. 30.
    Haerian, A.L.: New insights on the multistage insertion formulation of the traveling salesman problem- polytopes, experiments, and algorithm. Ph.D. thesis, University of Auckland, New Zealand (2011)Google Scholar
  31. 31.
    Haerian, A.L., Arthanari, T.S.: Traveling salesman problem and membership in pedigree polytope - a numerical illustration. In: Le Thi, H.A., Bouvry, P., Tao, P.D. (eds.) Modelling, Computation and Optimization in Information Systems and Management Science, pp. 145–154. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  32. 32.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Held, M., Karp, R.M.: The travelling salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970)zbMATHCrossRefGoogle Scholar
  34. 34.
    Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Karp, R.M.: Combinatorics, complexity, and randomness. Commun. ACM 29(2), 97–109 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simmulated annealing. Science 220(4598), 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Lawler, E.L., et al.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Hoboken (1985)zbMATHGoogle Scholar
  38. 38.
    Lenstra, J.K.: Technical noteclustering a data array and the travelingsalesman problem. Oper. Res. 22(2), 413–414 (1974)CrossRefGoogle Scholar
  39. 39.
    Letchford, A.N., Lodi, A.: Mathematical programming approaches to the traveling salesman problem. Wiley Encycl. Oper. Res. Manag. Sci. (2011)Google Scholar
  40. 40.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Little, J.D., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the traveling salesman problem. Oper. res. 11(6), 972–989 (1963)zbMATHCrossRefGoogle Scholar
  42. 42.
    Makkeh, A., Pourmoradnasseri, M., Theis, D.O.: The graph of the pedigree polytope is asymptotically almost complete (2016). arXiv:1611.08419
  43. 43.
    Miller, C., Tucker, A., Zemlin, R.: Integer programming formulations and traveling salesman problems. J. Assoc. Comput. Mach. 7(4), 326–329 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Naddef, D.: The Hirsch conjecture is true for (0;1)-polytopes. Math. Program. B 45, 109–110 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Nagata, Y.: New EAX crossover for large TSP instances. Parallel Problem Solving from Nature-PPSN IX, pp. 372–381. Springer, Berlin (2006)CrossRefGoogle Scholar
  46. 46.
    Öncan, T., Altınel, İ.K., Laporte, G.: A comparative analysis of several asymmetric traveling salesman problem formulations. Comput. Oper. Res. 36(3), 637–654 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Orlin, J.B., Plotkin, S.A., Tardos, Éva: Polynomial dual network simplex algorithms. Math. Program. 60(1), 255–276 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Padberg, M., Sung, T.Y.: An analytical comparison of different formulations of the travelling salesman problem. Math. Program. 52(1–3), 315–357 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Reinlet, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)zbMATHCrossRefGoogle Scholar
  50. 50.
    Sarin, S.C., Sherali, H.D., Bhootra, A.: New tighter polynomial length formulations for the asymmetric traveling salesman problem with and without precedence constraints. Oper. Res. Lett. 33(1), 62–70 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Schrijver, A.: On the history of combinatorial optimization (till 1960). Handbooks in Operations Research and Management Science, vol. 12, pp. 1–68. Elsevier, Amsterdam (2005)Google Scholar
  52. 52.
    Sherali, H.D., Driscoll, P.J.: On tightening the relaxations of miller-tucker-zemlin formulations for asymmetric traveling salesman problems. Oper. Res. 50(4), 656–669 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Wong, R.T.: Integer programming formulations of the traveling salesman problem. In: Proceedings of the IEEE International Conference of Circuits and Computers, pp. 149–152 (1980)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ISOM, Faculty of Business and EconomicsUniversity of AucklandAucklandNew Zealand

Personalised recommendations