Skip to main content

Symmetric Travelling Salesman Problem

Some New Algorithmic Possibilities

  • Chapter
  • First Online:
Mathematical Programming and Game Theory

Part of the book series: Indian Statistical Institute Series ((INSIS))

Abstract

The Symmetric Travelling Salesman Problem (STSP) has many different formulations. The most famous formulation is the standard formulation by Dantzig, Fulkerson and Johnson (Oper Res 2(4):393–410, 1954, [22]), which has \(n(n - 1)\) variables and \(2n - 1 + n - 1\) constraint. The focus of this research is on the multistage insertion formulation (Arthanari, Mathematical Programming - The State of the Art, 1983, [5]). The MI formulation is as tight as the standard formulation but only has \(n^3\) variables and \(n(n - 1)/2 + (n - 3)\) constraints. Integer gaps found in computational studies comparing different formulations indicate the superior performance of the MI-formulation. However, these comparisons have used generic LP solvers to solve the MI-formulation of STSP instances. Due to memory restrictions, problem sizes below 300 are only considered by them (Haerian, New insights on the multistage insertion formulation of the traveling salesman problem-polytopes, experiments, and algorithm, 2011, [30]) In this chapter, we outline a four-phase approach to solve this problem based on Arthanari’s (Atti della Accademia Peloritana dei Pericolanti- Classe di Scienze Fisiche, Matematiche e Naturali, 2017, [10]) finding that the MI relaxation is a special type of hypergraph minimum cost flow problem. Phase 1 adapts the HySimplex methods from Cambini et al. (Math Program 78(2):195–217, 1997, [15]) for the MI-relaxation problem of the STSP. Phase 2 is the implementation of a prototype from the algorithms in phase 1. Phase 3 consists of optimizing the prototype from phase 2. Phase 4 consists of computational experiments. This chapter focuses on phase 1 of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use HC to represent a Hamiltonian cycle instead of H because in later sections, we use H to represent a hypergraph.

References

  1. Agarwala, R.: A fast and scalable radiation hybrid map construction and integration strategy. Genome Res. 10(3), 350–364 (2000)

    Article  Google Scholar 

  2. Applegate, D., et al. Concorde Home. http://www.tsp.gatech.edu/concorde/index.html

  3. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University press (2006)

    Google Scholar 

  4. Ardekani, L.H., Arthanari, T.S.: Traveling salesman problem and membership in pedigree polytope-a numerical illustration. Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 145–154. Springer, Berlin (2008)

    Chapter  MATH  Google Scholar 

  5. Arthanari, T.S.: On the traveling salesman problem. Mathematical Programming - The State of the Art. Springer, Berlin (1983)

    Google Scholar 

  6. Arthanari, T.S.: Pedigree polytope is a combinatorial polytope. In: Mohan, S.R., Neogy, S.K. (eds.) Operations Research with Economic and Industrial Applications: Emerging Trends, pp. 1–17. Anamaya Publishers, New Delhi (2005)

    Google Scholar 

  7. Arthanari, T.S.: On pedigree polytopes and Hamiltonian cycles. Discret. Math. 306(14), 1474–1492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arthanari, T.S.: On the membership problem of pedigree polytope. In: Neogy, S.K., et al. (eds.) Mathematical Programming and Game Theory for Decision Making. World Scientific, Singapore (2008)

    Google Scholar 

  9. Arthanari, T.S.: Study of the pedigree polytope and a sufficiency condition for nonadjacency in the tour polytope. Discret. Optim. 10(3), 224–232 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arthanari, T.S.: Symmetric traveling salesman problem and flows on hypergraphs - new algorithmic possibilities. In: Atti della Accademia Peloritana dei Pericolanti- Classe di Scienze Fisiche, Matematiche e Naturali, under consideration (2017)

    Google Scholar 

  11. Arthanari, T.S., Usha, M.: An alternate formulation of the symmetric traveling salesman problem and its properties. Discret. Appl. Math. 98(3), 173–190 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arthanari, T.S., Usha, M.: On the equivalence of the multistage-insertion and cycle shrink formulations of the symmetric traveling salesman problem. Oper. Res. Lett. 29(3), 129–139 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bellman, R.E.: Dynamic programming treatment of the traveling salesman problem. J. Assoc. Comput. Mach. 9(1), 61–63 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bondy, J., Murthy, U.S.R.: Graph Theory and Applications. Springer, Berlin (2008)

    Google Scholar 

  15. Cambini, R., Gallo, G., Scutellà, M.G.: Flows on hypergraphs. Math. Program. 78(2), 195–217 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carr, R.D.: Polynomial separation procedures and facet determination for inequalities of the traveling salesman polytope. Ph.D. thesis, Carnegie Mellon University (1995)

    Google Scholar 

  17. Carr, R.D.: Separating over classes of TSP inequalities defined by 0 node-lifting in polynomial time. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 460–474. Springer (1996)

    Google Scholar 

  18. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report DTIC Document (1976)

    Google Scholar 

  19. Claus, A.: A new formulation for the travelling salesman problem. SIAM J. Algebr. Discret. Methods 5(1), 21–25 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cook, W.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. Princeton University Press, Princeton (2012)

    Google Scholar 

  21. Cunningham, W.H.: A network simplex method. Math. Program. 11(1), 105–116. ISSN: 1436-4646 (1976). https://doi.org/10.1007/BF01580379

    Article  MathSciNet  MATH  Google Scholar 

  22. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-saesman problem. Oper. Res. 2(4), 393–410 (1954)

    Google Scholar 

  23. Delí Amico, M., Maffioli, F., Martello, S. (eds.): Annotated Bibliographies in Combinatorial Optimization. Wiley-Interscience, Wiley, New York (1997)

    Google Scholar 

  24. Flood, Merrill M.: The traveling-salesman problem. Oper. Res. 4(1), 61–75 (1956)

    Article  MathSciNet  Google Scholar 

  25. Fox, K.R., Gavish, B., Graves, S.C.: An n-constraint formulation of the time-dependent travelling salesman problem. Oper. Res. 28(4), 1018–1021 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gavish, B., Graves, S.C.: The travelling salesman problem and related problems. Working Paper, OR-078-78, Operations Research Center, MIT, Cambridge

    Google Scholar 

  27. Godinho, M.T., Gouveia, L., Pesneau, P.: Natural and extended formulations for the time-dependent traveling salesman problem. Discret. Appl. Math. 164, 138–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gouveia, L., Voß, S.: A classification of formulations for the (timedependent) traveling salesman problem. Eur. J. Oper. Res. 83(1), 69–82 (1995)

    Article  MATH  Google Scholar 

  29. Gubb, M.: Flows, Insertions and Subtours Modelling the Travelling Salesman. Project Report, Part IV Project 2011. Department of Engineering Science, University of Auckland (2011)

    Google Scholar 

  30. Haerian, A.L.: New insights on the multistage insertion formulation of the traveling salesman problem- polytopes, experiments, and algorithm. Ph.D. thesis, University of Auckland, New Zealand (2011)

    Google Scholar 

  31. Haerian, A.L., Arthanari, T.S.: Traveling salesman problem and membership in pedigree polytope - a numerical illustration. In: Le Thi, H.A., Bouvry, P., Tao, P.D. (eds.) Modelling, Computation and Optimization in Information Systems and Management Science, pp. 145–154. Springer, Berlin (2008)

    Chapter  MATH  Google Scholar 

  32. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  33. Held, M., Karp, R.M.: The travelling salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970)

    Article  MATH  Google Scholar 

  34. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Karp, R.M.: Combinatorics, complexity, and randomness. Commun. ACM 29(2), 97–109 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simmulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lawler, E.L., et al.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, Hoboken (1985)

    MATH  Google Scholar 

  38. Lenstra, J.K.: Technical noteclustering a data array and the travelingsalesman problem. Oper. Res. 22(2), 413–414 (1974)

    Article  Google Scholar 

  39. Letchford, A.N., Lodi, A.: Mathematical programming approaches to the traveling salesman problem. Wiley Encycl. Oper. Res. Manag. Sci. (2011)

    Google Scholar 

  40. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  41. Little, J.D., Murty, K.G., Sweeney, D.W., Karel, C.: An algorithm for the traveling salesman problem. Oper. res. 11(6), 972–989 (1963)

    Article  MATH  Google Scholar 

  42. Makkeh, A., Pourmoradnasseri, M., Theis, D.O.: The graph of the pedigree polytope is asymptotically almost complete (2016). arXiv:1611.08419

  43. Miller, C., Tucker, A., Zemlin, R.: Integer programming formulations and traveling salesman problems. J. Assoc. Comput. Mach. 7(4), 326–329 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  44. Naddef, D.: The Hirsch conjecture is true for (0;1)-polytopes. Math. Program. B 45, 109–110 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nagata, Y.: New EAX crossover for large TSP instances. Parallel Problem Solving from Nature-PPSN IX, pp. 372–381. Springer, Berlin (2006)

    Chapter  Google Scholar 

  46. Öncan, T., Altınel, İ.K., Laporte, G.: A comparative analysis of several asymmetric traveling salesman problem formulations. Comput. Oper. Res. 36(3), 637–654 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Orlin, J.B., Plotkin, S.A., Tardos, Éva: Polynomial dual network simplex algorithms. Math. Program. 60(1), 255–276 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Padberg, M., Sung, T.Y.: An analytical comparison of different formulations of the travelling salesman problem. Math. Program. 52(1–3), 315–357 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Reinlet, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)

    Article  MATH  Google Scholar 

  50. Sarin, S.C., Sherali, H.D., Bhootra, A.: New tighter polynomial length formulations for the asymmetric traveling salesman problem with and without precedence constraints. Oper. Res. Lett. 33(1), 62–70 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Schrijver, A.: On the history of combinatorial optimization (till 1960). Handbooks in Operations Research and Management Science, vol. 12, pp. 1–68. Elsevier, Amsterdam (2005)

    Google Scholar 

  52. Sherali, H.D., Driscoll, P.J.: On tightening the relaxations of miller-tucker-zemlin formulations for asymmetric traveling salesman problems. Oper. Res. 50(4), 656–669 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wong, R.T.: Integer programming formulations of the traveling salesman problem. In: Proceedings of the IEEE International Conference of Circuits and Computers, pp. 149–152 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiru Arthanari .

Editor information

Editors and Affiliations

Appendix A—Hypergraph Algorithms

Appendix A—Hypergraph Algorithms

The four algorithms used to solve the minimum cost flow problem on the hypergraph are presented here.

figure a
figure b
figure c
figure d
figure e

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arthanari, T., Qian, K. (2018). Symmetric Travelling Salesman Problem. In: Neogy, S., Bapat, R., Dubey, D. (eds) Mathematical Programming and Game Theory. Indian Statistical Institute Series. Springer, Singapore. https://doi.org/10.1007/978-981-13-3059-9_5

Download citation

Publish with us

Policies and ethics