Advertisement

Optimization Problems on Acyclic Orientations of Graphs, Shellability of Simplicial Complexes, and Acyclic Partitions

  • Masahiro HachimoriEmail author
Chapter
Part of the Indian Statistical Institute Series book series (INSIS)

Abstract

In this chapter, we discuss optimization problems on orientations of a given graph, where the values of the objective functions are determined by the out-degrees of the resulted directed graph and the constraints contain acyclicity of the orientations. We survey applications of such optimization problems in polytope theory, shellability of simplicial complexes, and acyclic partitions. We also discuss such optimization problems without acyclicity constraint.

References

  1. 1.
    Björner, A.: Posets, regular CW complexes and Bruhat order. Eur. J. Combin. 5, 7–16 (1984)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 1819–1872. North-Holland (1995)Google Scholar
  3. 3.
    Björner, A., Wachs, M.: On lexicographically shellable posets. Trans. Am. Math. Soc. 277, 323–341 (1983)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Björner, A., Wachs, M.: Shellable nonpure complexes and posets I. Trans. Am. Math. Soc. 348, 1299–1327 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Björner, A., Wachs, M.: Shellable nonpure complexes and posets II. Trans. Am. Math. Soc. 349, 3945–3975 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blind, R., Mani, P.: On puzzles and polytope isomorphisms. Aequationes Math. 34, 287–297 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press, Oxford (1987)Google Scholar
  8. 8.
    Danaraj, G., Klee, V.: A presentation of \(2\)-dimensional pseudomanifolds and its use in the design of a linear-time shelling algorithm. Ann. Discrete Math. 2, 53–63 (1978)Google Scholar
  9. 9.
    Duval, A.M., Goeckner, B., Klivans, C.J., Martin, J.L.: A non-partitionable Cohen-Macaulay simplicial complex. Adv. Math. 299, 381–395 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hachimori, M.: Orientations on simplicial complexes and cubical complexes, unpublished manuscript, 8 p. (http://infoshako.sk.tsukuba.ac.jp/~hachi/archives/cubic_morse4.pdf)
  12. 12.
    Hachimori, M., Kashiwabara, K.: Obstructions to shellability, partitionability, and sequential Cohen-Macaulayness. J. Combin. Theory Ser. A 118(5), 1608–1623 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hachimori, M., Moriyama, S.: A note on shellability and acyclic orientations. Discrete Math. 308, 2379–2381 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kalai, G.: A simple way to tell a simple polytope from its graph. J. Combin. Theory Ser. A 49(2), 381–383 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kleinschmidt, P., Onn, S.: Signable posets and partitionable simplicial complexes. Discrete Comput. Geom. 15, 443–466 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kaibel, V., Pfetsch, M.: Some algorithmic problems in polytope theory. In: Joswig, M., Takayama, N. (eds.) Algebra, Geometry and Software Systems, pp. 23–47. Springer, Berlin (2003)CrossRefGoogle Scholar
  17. 17.
    Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)zbMATHGoogle Scholar
  18. 18.
    Stanley, R.P.: Combinatorics and Commutative Algebra, 2nd edn. Birkhäuser, Boston (1996)zbMATHGoogle Scholar
  19. 19.
    Wachs, M.: Obstructions to shellability. Discrete Comput. Geom. 22, 95–103 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Williamson Hoke, K.: Completely unimodal numberings of a simple polytope. Discrete Appl. Math. 20, 69–81 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ziegler, G.: Lectures on Polytopes. Springer, Berlin (1994). Second revised printing 1998zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Engineering, Information and SystemsUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations