Advertisement

Cooperative Games in Networks Under Uncertainty on the Costs

  • L. MallozziEmail author
  • A. Sacco
Chapter
Part of the Indian Statistical Institute Series book series (INSIS)

Abstract

In this chapter, the multi-commodity network flow problem is faced within a cooperative game theoretical approach. The shipping of a commodity generates a certain return for each player, but the cost to build the network may be uncertain. Taking care of this uncertainty of the costs, a cooperative game model is presented and the existence of core solutions is investigated.

Keywords

Networks Cooperative games Stochastic uncertainty 

Notes

Acknowledgements

The work has been supported by STAR 2014 (linea 1) “Variational Analysis and Equilibrium Models in Physical and Social Economic Phenomena”, University of Naples Federico II, Italy.

References

  1. 1.
    Alparslan Gök, S.Z.: On the interval Shapley value. Optimization 63, 747–755 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alparslan Gök, S.Z., Miquel, S., Tijs, S.: Cooperation under interval uncertainty. Math. Methods Oper. Res. 69, 99–109 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alparslan Gök, S.Z., Branzei, R., Tijs, S.: The interval Shapley value: an axiomatization. Cent. Eur. J. Oper. Res. 18, 131–140 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Avrachenkov, K., Elias, J., Martignon, F., Neglia, Petrosyan, G.L.: A Nash bargaining solution for cooperative network formation games. In: Proceedings of Networking 2011, Valencia, Spain (2011)Google Scholar
  5. 5.
    Branzei, R., Dimitrov, D., Tijs, S.: Models in Cooperative Game Theory, vol. 556. Springer (2003)Google Scholar
  6. 6.
    Branzei, R., Branzei, O., Alparslan Gök, S.Z., Tijs, S.: Cooperative interval games: a survey. Cent. Eur. J. Oper. Res. 18, 397–411 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, H., Roughgarden, T., Valiant, G.: Designing networks with good equilibria. In: SODA ’08/SICOMP ’10 (2008)Google Scholar
  8. 8.
    D’Amato, E., Daniele, E., Mallozzi, L.: A network design model under uncertainty. In: Pardalos, P.M., Rassias, T.M. (eds.) Contributions in Mathematics and Engineering, In Honor of Constantin Caratheodory, pp. 81–93. Springer (2016)Google Scholar
  9. 9.
    Faigle, U., Nawijn, W.M.: Note on scheduling intervals on-line. Discret. Appl. Math. 58, 13–17 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gilles, R.P., Chakrabarti, S., Sarangi, S.: Nash equilibria of network formation games under consent. Math. Soc. Sci. 64, 159–165 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, X., Zhang, M., Zang, Z.: On interval assignment games. In: Zang, D. (ed.) Advances in Control and Communication, LNEE, vo. 137, pp. 611–616 (2012)Google Scholar
  12. 12.
    Mallozzi, L.: An application of optimization theory to the study of equilibria for games: a survey. Cent. Eur. J. Oper. Res. 21, 523–539 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mallozzi, L., Scalzo, V., Tijs, S.: Fuzzy interval cooperative games. Fuzzy Sets Syst. 165, 98–105 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mares, M., Vlach, M.: Fuzzy classes of cooperative games with transferable utility. Scientiae Mathematicae Japonica 2, 269–278 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Marinakis, Y., Migdalas, A., Pardalos, P.M.: Expanding neighborhood search GRASP for the probabilistic traveling salesman problem. Optim. Lett. 2, 351–361 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14 124–143 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Moulin, H.: Cost sharing in networks: some open questions. Int. Game Theory Rev. 15, 134–144 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Moulin, H., Shenker, S.: Serial cost sharing. Econometrica 60, 1009–1037 (1992)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007)CrossRefGoogle Scholar
  20. 20.
    Owen, G.: Game Theory. Academic Press, UK (1995)zbMATHGoogle Scholar
  21. 21.
    Ozen, U., Slikker, M., Norde, H.: A general framework for cooperation under uncertainty. Oper. Res. Lett. 37, 148–154 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sharkey, W.W.: Network models in economics. In: Bali, M.O. et al., (eds.) Handbooks in OR & MS, vol. 8 (1995)Google Scholar
  23. 23.
    Tijs, S.: Introduction to Game Theory. Hindustan Book Agency (2003)Google Scholar
  24. 24.
    Topkis, D.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)Google Scholar
  25. 25.
    Trudeau, C., Vidal-Puga, J.: On the set of extreme core allocations for minimal cost spanning tree problems. J. Econ. Theory 169, 425–452 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mathematics and ApplicationsUniversity Federico IINaplesItaly
  2. 2.Department of Methods and Models for Economics, Territory and FinanceSapienza UniversityRomeItaly

Personalised recommendations