Advertisement

A Unified Framework for a Class of Mathematical Programming Problems

  • Dipti DubeyEmail author
  • S. K. Neogy
Chapter
Part of the Indian Statistical Institute Series book series (INSIS)

Abstract

In this chapter, we study various mathematical programming problems in a common framework known as linear complementarity problem. Solving a linear complementarity problem depends on the properties of its underlying matrix class. In this chapter, we discuss matrix theoretic properties of some recent matrix classes encountered in linear complementarity literature and its processability using Lemke’s algorithm.

Keywords

Linear complementarity problem Matrix classes Lemke’s algorithm Positive subdefinite matrix Fully copositive matrix Almost \(\bar{N}\) matrix 

Notes

Acknowledgements

The authors would like to thank the anonymous referees for their constructive suggestions, which considerably improve the overall presentation of the chapter. The first author wants to thank the Science and Engineering Research Board, DST, Government of India for financial support for this research.

References

  1. 1.
    Chung, S.J.: NP-completeness of the linear complementarity problem. J. Optim. Theory Appl. 60, 393–399 (1989)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Crouzeix, J.-P., Hassouni, A., Lahlou, A., Schaible, S.: Positive subdefinite matrices, generalized monotonicity and linear complementarity problems. SIAM J. Matrix Anal. Appl. 22, 66–85 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cottle, R.W.: The principal pivoting method revisited. Math. Program. 48, 369–385 (1990)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cottle, R.W., Dantzig, G.B.: A generalization of the linear complementarity problem. J. Comb. Theory 8, 79–90 (1970)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cottle, R.W., Ferland, J.A.: Matrix-theoretic criteria for the quasiconvexity and pseudoconvexity of quadratic functions. Linear Algebr. Its Appl. 5, 123–136 (1972)CrossRefGoogle Scholar
  6. 6.
    Cottle, R.W., Guu, S.-M.: Two characterizations of sufficient matrices. Linear Algebr. Its Appl. 170, 56–74 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cottle, R.W., Pang, J.S.: On solving linear complementarity problems as linear programs. Math. Program. Study 7, 88–107 (1978)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)zbMATHGoogle Scholar
  9. 9.
    De Schutter, B., De Moor, B.: The extended linear complementarity problem. Math. Program. 71, 289–325 (1995)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dubey, D., Neogy, S.K.: On hidden \(\mathbf{Z}\)-matrices and the linear complementarity problem. Linear Algebr. Its Appl. 496, 81–100 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Eaves, B.C.: The linear complementarity problem. Manag. Sci. 17, 612–634 (1971)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ebiefung, A.A., Kostreva, M.: The generalized Leontief input-output model and its application to the choice of new technology. Ann. Oper. Res. 44, 161–172 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Habetler, G.J., Haddad, C.A.: Global stability of a two-species piecewise linear Volterra ecosystem. Appl. Math. Lett. 5(6), 25–28 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Garcia, C.B.: Some classes of matrices in linear complementarity theory. Math. Program. 5, 299–310 (1973)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gowda, M.S.: Affine pseudomonotone mappings and the linear complementarity problem. SIAM J. Matrix Anal. Appl. 11, 373–380 (1990)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gowda, M.S.: On the extended linear complementarity problem. Math. Program. 72, 33–50 (1996)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gowda, M.S., Sznajder, R.: The generalized order linear complementarity problem. SIAM J. Matrix Anal. Appl. 15, 779–795 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gowda, M.S., Sznajder, R.: A generalization of the Nash equilibrium theorem on bimatrix games. Int. J. Game Theory 25, 1–12 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kaneko, I.: A linear complementarity problem with an \(n\) by \(2n\)\(P\)”-matrix. Math. Program. Study 7, 120–141 (1978)CrossRefGoogle Scholar
  21. 21.
    Kaneko, I., Pang, J.S.: Some \(n\) by \(dn\) linear complementarity problems. Linear Algebr. Its Appl. 34, 297–319 (1980)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Manag. Sci. 11, 681–689 (1965)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lemke, C.E.: Recent results on complementarity problems. In: Rosen, J.B., Mangasarian, O.L., Ritter, K. (eds.) Nonlinear Programming, pp. 349–384. Academic Press, New York (1970)CrossRefGoogle Scholar
  24. 24.
    Lemke, C.E., Howson Jr., J.T.: Equilibrium points of bimatrix games. SIAM J. Appl. Math. 12, 413–423 (1964)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mangasarian, O.L.: Linear complementarity problems sovable by a single linear program. Math. Program. 10, 263–270 (1976)CrossRefGoogle Scholar
  26. 26.
    Mangasarian, O.L.: Characterization of linear complementarity problems as linear programs. Math. Program. Study 7, 74–87 (1978)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mangasarian, O.L.: Simplified characterization of linear complementarity problems as linear programs. Math. O.R. 4, 268–273 (1979)Google Scholar
  28. 28.
    Mangasarian, O.L., Pang, J.S.: The extended linear complementarity problem. SIAM J. Matrix Anal. Appl. 16, 359–368 (1995)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Martos, B.: Subdefinite matrices and quadratic forms. SIAM J. Appl. Math. 17, 1215–1223 (1969)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Mohan, S.R., Neogy, S.K.: Generalized linear complementarity in a problem of \(n\) person games. OR Spektrum 18, 231–239 (1996)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Mohan, S.R., Parthasarathy, T., Sridhar, R.: \(\bar{N}\) matrices and the class \(Q\). In: Dutta, B., et al. (eds.) Lecture Notes in Economics and Mathematical Systems, vol. 389, pp. 24–36. Springer, Berlin (1992)Google Scholar
  32. 32.
    Mohan, S.R., Parthasarathy, T., Sridhar, R.: The linear complementarity problem with exact order matrices. Math. Oper. Res. 19, 618–644 (1994)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Mohan, S.R., Neogy, S.K., Sridhar, R.: The generalized linear complementarity problem revisited. Math. Program. 74, 197–218 (1996)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Mohan, S.R., Neogy, S.K., Parthasarathy, T., Sinha, S.: Vertical linear complementarity and discounted zero-sum stochastic games with ARAT structure. Math. Program. Ser. A 86, 637–648 (1999)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Mohan, S.R., Neogy, S.K., Parthasarathy, T.: Pivoting algorithms for some classes of stochastic games: a survey. Int. Game Theory Rev. 3, 253–281 (2001)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mohan, S.R., Neogy, S.K., Das, A.K.: On the class of fully copositive and fully semimonotone matrices. Linear Algebr. Its Appl. 323, 87–97 (2001)CrossRefGoogle Scholar
  37. 37.
    Mohan, S.R., Neogy, S.K., Das, A.K.: More on positive subdefinite matrices and the linear complementarity problem. Linear Algebr. Its Appl. 338, 275–285 (2001)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Murty, K.G.: On the number of solutions to the linear complementarity problem and spanning properties of complementarity cones. Linear Algebr. Its Appl. 5, 65–108 (1972)CrossRefGoogle Scholar
  39. 39.
    Murty, K.G.: Linear Complementarity. Linear and Nonlinear Programming. Heldermann, Berlin (1988)zbMATHGoogle Scholar
  40. 40.
    Murthy, G.S.R., Parthasarathy, T.: Some properties of fully semimonotone matrices. SIAM J. Matrix Anal. Appl. 16, 1268–1286 (1995)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Murthy, G.S.R., Parthasarathy, T.: Fully copositive matrices. Math. Program. 82, 401–411 (1998)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Murthy, G.S.R., Parthasarathy, T., Ravindran, G.: On copositive semi-monotone \(Q\)-matrices. Math. Program. 68, 187–203 (1995)zbMATHGoogle Scholar
  43. 43.
    Neogy, S.K., Das, A.K.: On almost type classes of matrices with Q-property. Linear Multilinear Algebr. 53, 243–257 (2005)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Oh, K.P.: The formulation of the mixed lubrication problem as a generalized nonlinear complementarity problem. Trans. ASME, J. Tribol. 108, 598–604 (1986)CrossRefGoogle Scholar
  45. 45.
    Olech, C., Parthasarathy, T., Ravindran, G.: Almost \(N\)-matrices in linear complementarity. Linear Algebr. Its Appl. 145, 107–125 (1991)CrossRefGoogle Scholar
  46. 46.
    Pang, J.S.: On a class of least element complementarity problems. Math. Program. 16, 111–126 (1976)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Pang, J.S.: Hidden \(Z\)-matrices with positive principal minors. Linear Algebra Appl. 23, 201–215 (1979)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Saigal, R.: A characterization of the constant parity property of the number of solutions to the linear complementarity problem. SIAM J. Appl. Math. 23, 40–45 (1972)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Samelson, H., Thrall, R.M., Wesler, O.: A partition theorem for Euclidean \(n\)-space. Proc. Am. Math. Soc. 9, 805–807 (1958)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Scarf, H.E.: An algorithm for a class of non-convex programming problems. Cowles Commission Discussion Paper No. 211, Yale University (1966)Google Scholar
  51. 51.
    Scarf, H.E.: The core of an N person game. Econometrics 35, 50–69 (1967)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Sun, M.: Singular control problems in bounded intervals. Stochastics 21, 303–344 (1987)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Sun, M.: Monotonicity of Mangasarian’s iterative algorithm for generalized linear complementarity problems. J. Math. Anal. Appl. 144, 474–485 (1989)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Sznajder, R., Gowda, M.S.: Generalizations of \(P_{0}\)- and \(P\)- properties; extended vertical and horizontal linear complementarity problems. Linear Algebr. Its Appl. 223(224), 695–715 (1995)CrossRefGoogle Scholar
  55. 55.
    Vandenberghe, L., De Moor, B., Vandewalle, J.: The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits. IEEE Trans. Circuits Syst. 11, 1382–1391 (1989)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Ye, Y.: A fully polynomial time approximation algorithm for computing a stationary point of the General linear Complementarity Problem. Math. Oper. Res. 18, 334–345 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Indian Statistical InstituteNew DelhiIndia

Personalised recommendations