Skip to main content

Research on Pipeline Three-Way Adjustable Frequency Dynamic Vibration Absorption Technology

  • Chapter
  • First Online:
  • 522 Accesses

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

This chapter studies the three-way adjustable frequency vibration absorption technology of the typical piping system of vessel, proposes the design theory and scheme of the three-way adjustable frequency dynamic vibration absorption, and uses the vibration table to test the vibration performance of the absorber.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zheng RH (2012) Design and analysis of discrete absorbers for beam-type structures. J Technol 2(27):81–90

    Google Scholar 

  2. Gawthrop P, Neild SA, Wagg DJ (2015) Dynamically dual vibration absorbers: a bond graph approach to vibration control. Syst Sci Control Eng 3(1):113–128

    Article  Google Scholar 

  3. Jin XD, Cheng XM (1997) Ship’s ankle vibration and dynamic vibration absorber vibration reduction. J Shang Hai Jiaotong Univ 2:38–40

    Google Scholar 

  4. Yu ZF, Wang T, Shen HJ et al (2013) Application of dynamic vibration absorber in flywheel vibration control. Noise Vibr Control 33(5):173–178

    Google Scholar 

  5. Liu K, Liu J (2005) The damped dynamic vibration absorbers: revisited and new result. J Sound Vibr 284(3):1181–1189

    Article  Google Scholar 

  6. Espíndola JJ, Pereira P, Bavastri CA et al (2009) Design of optimum system of viscoelastic vibration absorbers with a Frobenius norm objective function. J Braz Soc Mech Sci Eng 31(3):210–219

    Google Scholar 

  7. Zeng S, Ren Y, Cheng TT et al (2012) Damping of pipeline system using tuned mass dampers. J Vibr Measur Diagn 32(5):823–826

    Google Scholar 

  8. Li B, Niu WC, Xu ZY (2016) Eddy current vibration absorber design and experiments. J Northwest Polytech Univ 1:18–24

    Google Scholar 

  9. Habib G, Kerschen G (2015) Suppression of limit cycle oscillations using the nonlinear tuned vibration absorber. Proc R Soc A Math Phys Eng Sci 471(2176):20140976

    Article  MathSciNet  Google Scholar 

  10. Benacchio S, Malher A, Boisson J et al (2016) Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn 85(2):893–911

    Article  MathSciNet  Google Scholar 

  11. Bonsel JH, Fey RHB, Nijmeijer H (2004) Application of a dynamic vibration absorber to a piecewise linear beam system. Nonlinear Dyn 37(3):227–243

    Article  Google Scholar 

  12. Sun HL, Zhang PQ, Chen HB et al (2008) Application of dynamic vibration absorbers in structural vibration control under multi-frequency harmonic excitations. Appl Acoust 69(12):1361–1367

    Article  Google Scholar 

  13. Webster AC, Vaicaitis R (1992) Application of tuned mass dampers to control vibrations of composite floor systems. Eng J Am Inst Steel Constr 29(3):116–124

    Google Scholar 

  14. Yang C, Li D, Cheng L (2011) Dynamic vibration absorbers for vibration control within a frequency band. J Sound Vibr 330(8):1582–1598

    Article  Google Scholar 

  15. Kęcik K, Mitura A, Warmiński J (2013) Efficiency analysis of an autoparametric pendulum vibration absorber. Eksploatacja i Niezawodność 15(3):221–224

    Google Scholar 

  16. Yuan L (2007) Optimal design of parameters for dynamic vibration absorber in two-degree-freedom systems. J Hunan Univ Technol 2:46–48

    Google Scholar 

  17. Li JF, Gong XL, Zhang XZ et al (2005) Study of adaptive tuned vibration absorber and its dynamic properties. J Exp Mech 20(4):507–514

    Google Scholar 

  18. Xu ZB, Gong XL, Chen XM et al (2009) Study on mechanical adaptive tuned vibration absorber. China Acad J Electron Publ House 9:1057–1062

    Google Scholar 

  19. Hill S, Snyder S, Cazzolato B (2002) An adaptive vibration absorber. In: Acoustics 2002—innovation in acoustics and vibration. Annual conference of the Australian Acoustical Society. Adelaide, Australia

    Google Scholar 

  20. Mirsanei R, Hajikhani A, Peykari B et al (2012) Developing a new design for adaptive tuned dynamic vibration absorber (ATDVA) based on smart slider-crank mechanism to control of undesirable vibrations. IJNEM

    Google Scholar 

  21. Gong X, Peng C, Xuan S et al (2012) A pendulum-like tuned vibration absorber and its application to a multi-mode system. J Mech Sci Technol 26(11):3411–3422

    Article  Google Scholar 

  22. Aguirre G, Gorostiaga M, Porchez T et al (2013) Self-tuning dynamic vibration absorber for machine tool chatter suppression

    Google Scholar 

  23. Mikułowski G, Wiszowaty R (2016) Pneumatic adaptive absorber: mathematical modelling with experimental verification. Math Probl Eng 2016(4):1–13

    Article  Google Scholar 

  24. Yang K, Zhang YW, Chen LQ et al (2014) Space structure vibration control based on passive nonlinear energy sink. J Dyn Control 3:205–209

    Google Scholar 

  25. Wang LH, Gong XL, Deng HX et al (2007) Adaptive tuned vibration absorber based on magnetorheological elastomers and its optimal control. J Exp Mech 22(z1):429–434

    Google Scholar 

  26. Kang CJ, Gong XL, Chen XM et al (2012) Control system for an adaptive-active tuned vibration absorber based on magnetorheological elastomers. J Vibr Shock 31(6):27–31

    Google Scholar 

  27. Sun SS, Chen Y, Yang J et al (2014) The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode. Smart Mater Struct 23(7):075009

    Article  Google Scholar 

  28. Herold S, Mayer D (2016) Adaptive piezoelectric absorber for active vibration control. Actuators 5(1):7

    Article  Google Scholar 

  29. Rustighi E, Rustighi E, Brennan MJ et al (2003) Design of an adaptive vibration absorber using shape memory alloy 14(1):19–28(10)

    Google Scholar 

  30. Gao Q, Fang XB, Zhao YQ et al (2013) Variable mass dynamic vibration absorber and its performance of vibration reduction. J Chang’an Univ (Natural Science Edition) 33(5):109–112

    Google Scholar 

  31. Wang BQ (2005) Research on active vibration control technology based on mechanical actuator. Harbin Engineering University

    Google Scholar 

  32. Yan C (2007) Research on active vibration isolation technology based on electric actuators. Harbin Engineering University

    Google Scholar 

  33. Millitzer J, Ehrt T, Plückhahn A et al (2012) Design, system integration and control concepts of an adaptive active vibration absorber for a convertible. In: ISMA 2012, International Conference on Noise and Vibration Engineering, Conference Proceedings

    Google Scholar 

  34. Pagliarulo P, Kuhnen K, May C et al (2004) Tunable magnetostrictive dynamic vibration absorber

    Google Scholar 

  35. Konstanzer P, Grunewald M, Jänker P et al (2006) Aircraft interior noise reduction through a Piezo tunable vibration absorber system. Congress of International Council of the Aeronautical Sciences

    Google Scholar 

  36. Chen ZL, Ma AL, You XL (2012) Theoretical research of the active-type dynamic vibration absorber. J Xiamen Univ Technol 20(3):67–70

    Article  Google Scholar 

  37. Li JQ (2008) Research on active vibration control technology of floating raft system. University of Science and Technology of China

    Google Scholar 

  38. Chen B, Li JQ, Shao CX (2008) Experimental study of multi-channel cooperating active vibration control on floating raft. J Exp Mech Anics 23(3):248–254

    Google Scholar 

  39. Beltran-Carbajal F, Silva-Navarro G, Abundis-Fong HF (2015) Application of passive/active duffing vibration absorbers in duffing mechanical systems. ICSV22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, F., Weng, Z., He, L. (2019). Research on Pipeline Three-Way Adjustable Frequency Dynamic Vibration Absorption Technology. In: Comprehensive Investigation on Active-Passive Hybrid Isolation and Tunable Dynamic Vibration Absorption. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-3056-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3056-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3055-1

  • Online ISBN: 978-981-13-3056-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics