Skip to main content

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 516 Accesses

Abstract

This chapter mainly introduces the necessity of the research and the status of active vibration and noise control, the research status of vibration and noise control of pipeline, as well as the research status of vibration absorption and vibration isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rayleigh L (1878) The theory of sound, vol. II, chapter XIV, § 282. In: Two sources of like pitch; points of silence; experimental methods, 1st edn. MacMillan & Co, London, pp 104–106; 2nd ed. (1894/96) and Reprints in Dover, New York, pp 116–118

    Google Scholar 

  2. Coanda H. Procédé protection contre les bruits. French patent FR 722.274, filed: 21 Oct 1930, patented: 29 Dec 1931

    Google Scholar 

  3. Coanda H. Procédé et dispositif de protection contre les bruits. French patent FR 762.121, filed: 31 Dec 1932, patented: 18 Jan 1934

    Google Scholar 

  4. Lueg P. Verfahren zur Dämpfung von Schallschwingungen. German patent no. 655 508, filed: 27 Jan 1993, patented: 30 Dec 1937

    Google Scholar 

  5. Lueg P. Process of silencing sound oscillations. U.S. patent US 2,043,416, filed: 8 Mar 1934, patented: 9 Jun 1936

    Google Scholar 

  6. Olson HF. Electronic sound absorber. U.S. patent US 2,983,790, filed: 30 Apr 1953, patented: 9 May 1961

    Google Scholar 

  7. Olson HF (1956) Electronic control of noise, vibration, and reverberation. J Acoust Soc Am 28:966–972

    Article  Google Scholar 

  8. Singh A, Bharadwaj S, Narayan S (2016) Analysis of various NHV sources of a combustion engine. Tehnički glasnik 10(1–2):29–37

    Google Scholar 

  9. Zhang H (2005) Active dynamic vibration absorber. Harbin Engineering University

    Google Scholar 

  10. Olsson C (2002) Active engine vibration isolation using feedback control. Division of Automatic Control, Department of Electrical Engineering, Linköpings universitet, Linköping

    Google Scholar 

  11. Toshio Y, Itaru T (2005) Active suspension control of a one-wheel car model using single input rule modules fuzzy reasoning and a disturbance observer. J Zhejiang Univ Sci A 6(4):251–256

    Google Scholar 

  12. Park H, Lee BH, Lee CW (2007) Design of an active control engine mount using a direct drive electrodynamic actuator. In: Proceeding of the ASME 2007 international design engineering technical conference & computers and information in engineering conference IDETC/CIE, pp 103–108

    Google Scholar 

  13. Gabbert U, Ringwelski S (2014) Active vibration and noise control of a car engine: modeling and experimental validation. In: Mechanics and model-based control of advanced engineering systems. Springer, Vienna, pp 123–135

    Google Scholar 

  14. Stanef DA, Hansen CH, Morgans RC (2004) Active control analysis of mining vehicle cabin noise using finite element modelling. J Sound Vib 277(1):277–297

    Article  Google Scholar 

  15. Gulyas K, Pinte G, Augusztinovicz F et al (2002) Active noise control in agricultural machines. Proc Int Conf Noise Vib Eng (ISMA) 1:11–22

    Google Scholar 

  16. Geng XH (2009) Optimal vibration control for vehicle active suspension system. Ocean University of China

    Google Scholar 

  17. Guo NC, Shi WK, Liu WJ et al (2012) Application of dynamic vibration absorber in vibration control of rear axle. J Jilin Univ (Eng Technol Ed) 42(6):1349–1354

    Google Scholar 

  18. Bohn C, Cortabarria A, Härtel V et al (2004) Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng Pract 12(8):1029–1039

    Article  Google Scholar 

  19. Ning D, Sun S, Li H et al (2016) Active control of an innovative seat suspension system with acceleration measurement based friction estimation. J Sound Vib 384:28–44

    Article  Google Scholar 

  20. Gan Z, Hillis AJ, Darling J (2015) Adaptive control of an active seat for occupant vibration reduction. J Sound Vib 349:39–55

    Article  Google Scholar 

  21. Maciejewski I, Krzyżyński T (2011) Control design of semi-active seat suspension systems. J Theor Appl Mech 49(4):1151–1168

    Google Scholar 

  22. Bianchini E (2005) Active vibration control of automotive steering wheels. SAE technical paper

    Google Scholar 

  23. Miller M, Narkiewicz J, Kania W et al (2006) The application of helicopter rotor blade active control systems for noise and vibration reduction and performance improvement. Pr Inst Lot 1–2(184–185):164–180

    Google Scholar 

  24. Zhao CF, Gu ZQ (2009) Time-domain simulation of active control of structural response for helicopter in frequency domain. J Syst Simul 21(20):6347–6351

    Google Scholar 

  25. Lu Y, Gu ZQ (2007) Helicopter structure response active control actuator optimization design. J Vib Shock 26(3):23–26

    Google Scholar 

  26. Sutton TJ, Elliott SJ, Brennan MJ et al (1997) Active isolation of multiple structural waves on a helicopter gearbox support strut. J Sound Vib 205(1):81–101

    Article  Google Scholar 

  27. Roth D, Enenkl B, Dieterich O (2006) Active rotor control by flaps for vibration reduction-full scale demonstrator and first flight test results

    Google Scholar 

  28. Konstanzer P, Grunewald M, Janker P et al (2006) Aircraft interior noise reduction through a piezo tunable vibration absorber system. In: Proceedings of the 25th international congress of the aeronautical sciences (ICAS 2006), pp 1–6

    Google Scholar 

  29. Shenggang Y, Dakai T, Xiaonei Z et al (2014) Design of active noise control system applied to helicopter cabins. Inter-Noise Noise-Con Congr Conf Proc Inst Noise Control Eng 249(6):1796–1799

    Google Scholar 

  30. Thomas DR, Nelson PA, Elliott SJ (1993) Active control of the transmission of sound through a thin cylindrical shell, part I: the minimization of vibrational energy. J Sound Vib 167(1):91–111

    Article  MATH  Google Scholar 

  31. Sun YF, Chen RW, Xu ZW et al (2003) The active vibration and noise control for fighter cockit model using piezoelectric material. J Astronaut 24(1):43–48

    Google Scholar 

  32. Wang HL, Li KX, Chen CL et al (2013) Experimentally investigating active vibration control of panel structure of airplane. Mech Sci Technol Aerosp Eng 32(10):1532–1536

    Google Scholar 

  33. Chen RW, Sun YF, Xiong K et al (2003) Structural noise suppression of aircraft cabin using elastic wave control concept. J Nanjing Univ Aeronaut Astronaut 35(5):489–493

    Google Scholar 

  34. Zimcik DG (2004) Active control of aircraft cabin noise. National Research Council of Canada Ottawa (Ontario), Institute for Aerospace Research

    Google Scholar 

  35. Gerner C, Sachau D, Breitbach H (2004) Active noise control in an aircraft cabin. In: Proceedings of IMAC-XXII, conference on structural dynamics, pp 20040126–20040129

    Google Scholar 

  36. Griffin S, Weston A, Anderson J (2013) Adaptive noise cancellation system for low frequency transmission of sound in open fan aircraft. Shock Vib 20(5):989–1000

    Article  Google Scholar 

  37. Karadal FM, Nalbantoğlu V, Şahin M et al (2008) Active flutter control of a smart fin. In: 19th international conference on adaptive structures and technologies, Switzerland

    Google Scholar 

  38. Shevtsov S, Tsahalis D, Flek M et al (2010) Comparison of active and passive modes of piezoelectric patch actuators for scaled helicopter rotor blade vibration suppression. In: Proceedings of international conference on noise and vibration engineering ISMA 2010, Leuven, Belgium, pp 441–456

    Google Scholar 

  39. Fischer R, Boroditsky L, Dempsey R et al (2006) Airborne noise flanking of shipboard vibration isolation systems. Sound Vib 40(12):19–22

    Google Scholar 

  40. Swinbanks MA, Daley S (1993) Advanced submarine technology-project M control theory report. Phase 1. GEC-Marconi Research Centre, Chelmsford (United Kingdom)

    Book  Google Scholar 

  41. Maillard JP, Fuller CR (1999) Active control of sound radiation from cylinders with piezoelectric actuators and structural acoustic sensing. J Sound Vib 222(3):363–387

    Article  Google Scholar 

  42. Laplante W, Chen T, Baz A et al (2002) Active control of vibration and noise radiation from fluid-loaded cylinder using active constrained layer damping. Mod Anal 8(6):877–902

    MATH  Google Scholar 

  43. Ruzzene M, Baz A (2000) Active/passive control of sound radiation and power flow in fluid-loaded shells. Thin-Walled Struct 38(1):17–42

    Article  Google Scholar 

  44. Anand RB, Arun KS, Baskaran K et al (2016) Acoustics reduction in marine vessel using active noise cancellation system. C Int J Eng Adv Res Technol (IJEART) 2(3):22–25

    Google Scholar 

  45. Annaswamy AM (2006) Active control of blade tonals in underwater vehicles. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  46. Pan X, Tso Y, Juniper R (2008) Active control of low-frequency hull-radiated noise. J Sound Vib 313(1):29–45

    Article  Google Scholar 

  47. Pan X, Tso Y, Juniper R (2008) Active control of radiated pressure of a submarine hull. J Sound Vib 311(1):224–242

    Article  Google Scholar 

  48. Pan X, Tso Y, Juniper R (2005) Active modal control of hull radiated noise. In: Proceedings of acoustics 2005, pp 9–11

    Google Scholar 

  49. Pan X, Hansen CH (1997) Active control of vibration transmission in a cylindrical shell. J Sound Vib 203(3):409–434

    Article  Google Scholar 

  50. Cao Y, Sun H, An F et al (2012) Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators. J Sound Vib 331(11):2471–2484

    Article  Google Scholar 

  51. Caresta M, Kessissoglou N (2012) Active control of sound radiated by a submarine hull in axisymmetric vibration using inertial actuators. J Vib Acoust 134(1):011002

    Article  Google Scholar 

  52. Caresta M, Kessissoglou NJ (2010) Active suppression of acoustic radiation from a submarine hull using inertial actuators. In: The 20th international congress on acoustics

    Google Scholar 

  53. Caresta M (2011) Active control of sound radiated by a submarine in bending vibration. J Sound Vib 330(4):615–624

    Article  Google Scholar 

  54. Xu M (2005) Adaptive-passive and active control of vibration and wave propagation in cylindrical shells using smart materials. University of Akron

    Google Scholar 

  55. Darsivan FJ, Martono W (2006) Engine mounting characteristic for vibration isolation and active vibration control strategies

    Google Scholar 

  56. Zhu MG, Yang TJ, Shuai ZJ et al (2011) Investigation of active vibration isolation based on an adaptive comb-shaped filtered algorithm. J Harbin Eng Univ 32(12):1576–1581

    Google Scholar 

  57. Olsson C (2005) Disturbance observer-based automotive engine vibration isolation dealing with non-linear dynamics and transient excitation. Department of Information Technology, Uppsala University

    Google Scholar 

  58. Johnson A, Daley S (2011) A smart spring mounting system for marine applications. In: 11th ICSV

    Google Scholar 

  59. Daley S, Johnson FA, Pearson JB et al (2004) Active vibration control for marine applications. Control Eng Pract 12(4):465–474

    Article  Google Scholar 

  60. Daley S, Hätönen J, Owens DH (2006) Active vibration isolation in a “smart spring” mount using a repetitive control approach. Control Eng Pract 14(9):991–997

    Article  Google Scholar 

  61. Li X, Howard CQ, Hansen CH et al (2004) Feasibility of active vibration isolation of diesel engines in Collins class warships. J High Energy Phys

    Google Scholar 

  62. Yang T et al (2014) On synchrophasing control of vibration for a floating raft vibration isolation system. In: Inter.Noise 2014

    Google Scholar 

  63. Yang TJ, Qi GY, Li WY et al (2006) Study on active control techniques for warship power plant. Ship Sci Technol 28(z2):46–53

    Google Scholar 

  64. Zhao YL, He L, Huang YY et al (2005) The computation of shock response of marine floating raft shock-resistant system in the time domain. Noise Vib Control 25(2):14–17

    Google Scholar 

  65. Niu JC, Song KJ (2004) Active control strategies of a floating raft isolation system for marine diesel engines. Trans CSICE 22(3):252–256

    Google Scholar 

  66. Fang YY, Wang GZ (2006) Design of vibration isolation for ship’s auxiliary machinery and analysis of coupling vibration with ship structure. J Jiangsu Univ Sci Technol (Nat Sci Ed) 20(3):16–20

    Google Scholar 

  67. Zhang YS, Tong ZP, Zhou Y et al (2013) Research of hard elastic isolation technology of marine gearboxes. Noise Vib Control 3:153–155

    Google Scholar 

  68. Guan YH, Shepard WS Jr, Lim TC et al (2004) Experimental analysis of an active vibration control system for gearboxes. Smart Mater Struct 13(5):1230

    Article  Google Scholar 

  69. Leung RCN (1997) Active control of machinery noise in a marine environment-lessons learned5. In: Fifth international congress on sound and vibration

    Google Scholar 

  70. Fuller CR, Elliott SJ, Nelson PA (1996) Active control of vibration. Elsevier Ltd

    Google Scholar 

  71. Bies DA, Hansen CH (2009) Engineering noise control: theory and practice, 4th edn. CRC Press

    Google Scholar 

  72. Hansen C et al (2012) Active control of noise and vibration, 2nd edn. CRC Press

    Google Scholar 

  73. Elliott SJ (2001) Signal processing for active control. Elsevier Ltd

    Google Scholar 

  74. Phohomsiri P et al (2006) Time-delayed positive velocity feedback control design for active control of structures. J Eng Mech 132(6):690–703

    Article  Google Scholar 

  75. Rohlfing J et al (2010) Compensation filter for feedback control units with proof-mass electrodynamic actuators. In: Proceedings of ISMA 2010 including USD, pp 425–439

    Google Scholar 

  76. Guo T et al (2012) An improved force feedback control algorithm for active tendons. Sensors 12:11360–11371

    Article  Google Scholar 

  77. Gao X, Chen Q (2013) Active vibration control for a bilinear system with nonlinear velocity time-delayed feedback. In: Proceedings of the world congress on engineering 2013, vol III

    Google Scholar 

  78. Martino OAA (2011) Hybrid time-frequency domain adaptive filtering algorithm for electrodynamic shaker control. J Eng Comput Innov 2(10):191–205

    Google Scholar 

  79. Perini EA et al (2009) Active control in rotating machinery using magnetic actuators with linear matrix inequalities (LMI) approach. In: Proceedings of the IMAC-XXVII

    Google Scholar 

  80. Jun L (2010) Positive position feedback control for high-amplitude vibration of a flexible beam to a principal resonance excitation. Shock Vib 17(2):187–203

    Article  Google Scholar 

  81. Marx LRK et al (2009) Embedded output feedback controllers for piezoelectric actuated structures. World J Mod Simul 5(2):113–119

    Google Scholar 

  82. Kim T et al (2016) Active vibration control of axial piston machine using higher harmonic least mean square control of swash plate. In: 10th international fluid power conference

    Google Scholar 

  83. Mazur K, Pawełczyk M (2016) Internal model control for a light-weight active noise-reducing casing. Arch Acoust 41(2):315–322

    Article  Google Scholar 

  84. Yousefi A (1998) Active vibration control of smart structures using piezoelements. In: CanSmart workshop

    Google Scholar 

  85. Zhang K, Scorletti G, Ichchou MN et al (2013) Robust active vibration control of piezoelectric flexible structures using deterministic and probabilistic analysis. J Intell Mater Syst Struct 25(6):665–679

    Article  Google Scholar 

  86. Jovanović MM, Simonović AM, Zorić ND et al (2014) Experimental investigation of spillover effect in system of active vibration control. FME Trans 42(4):329–334

    Article  Google Scholar 

  87. Camperi S, Ghanchitehrani M, Zilletti M et al (2016) Active vibration control of an inertial actuator subject to broadband excitation 744(1)

    Google Scholar 

  88. Paulitsch C et al (2004) Design of a lightweight, electrodynamic, inertial actuator with integrated velocity sensor for active vibration control of a thin lightly-damped panel. In: Proceedings of ISMA 2004

    Google Scholar 

  89. Loussert G et al (2016) An efficient and optimal moving magnet actuator for active vibration control. In: 15th international conference on new actuators, Bremen, German

    Google Scholar 

  90. Monner HP, Monner HP (2005) Smart materials for active noise and vibration reduction. In: Noise and vibrations—emerging methods

    Google Scholar 

  91. Nelson PG (2002) Supporting active electro-pneumatic vibration isolation systems on platforms supported by STACIS TM ‘hard-mount’ piezoelectric isolation systems

    Google Scholar 

  92. Sambavekar RV et al (2015) Active vibration control of a cantilever beam using PZT PATCH (SP-5H). Int J Eng Tech Res (IJETR) 3(5):37–39

    Google Scholar 

  93. Kircali OF, Yaman Y, Nalbantoglu V et al (2008) Active vibration control of a smart beam by using a spatial approach. In: New developments in robotics automation and control, pp 1318–1322

    Google Scholar 

  94. Rahman, Uralam N, Naushad M (2012) Active vibration control of a piezoelectric beam using PID controller: experimental study. Latin Am J Solids Struct 9(6):657–673

    Article  Google Scholar 

  95. Chhabra D, Narwal K, Singh P (2012) Design and analysis of piezoelectric smart beam for active vibration control. Int J Adv Res Technol 1:1–5

    Google Scholar 

  96. Birman V (1993) Active control of composite plates using piezoelectric stiffeners. Int J Mech Sci 35(5):387–396

    Article  MATH  Google Scholar 

  97. Li ZB, Chen H, Zhong YM et al (2010) Experimental research on PPF vibration control of flexible cantilever beam using PZT. J Shenzhen Polytechnic 09(5):1–5

    Google Scholar 

  98. Zoric N, Simonovic A, Mitrovic Z et al (2013) Active vibration control of smart composite beams using PSO-optimized self-tuning fuzzy logic controller. J Acoust Soc Am 51(2):275–286

    Google Scholar 

  99. Yavuz Y et al (2002) Active vibration control of a smart plate. In: ICAS 2002 congress

    Google Scholar 

  100. Berkhoff AP, Wesselink JM (2011) Combined MIMO adaptive and decentralized controllers for broadband active noise and vibration control. Mech Syst Signal Process 25:1702–1714

    Article  Google Scholar 

  101. Cao Y et al (2012) Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators. J Sound Vib 331:2471–2484

    Article  Google Scholar 

  102. Baillargeon BP (2002) Active vibration suppression of smart structures using piezoelectric shear actuators. The University of Maine

    Google Scholar 

  103. Nestorovic TT, Köppe H, Gabbert U (2006) Vibration control of a funnel-shaped shell structure with distributed piezoelectric actuators and sensors. Smart Mater Struct 15(4):1119–1132

    Article  Google Scholar 

  104. Volkan N, Güçlü S, Ömer FK et al (2008) Active flutter control of a smart fin. In: 19th international conference on adaptive structures and technologies, Ascona, Switzerland

    Google Scholar 

  105. Zhao G (2014) Active structural acoustic control of rotating machinery using piezo-based rotating inertial actuators. In: Proceedings of ISMA 2014 including USD 2014

    Google Scholar 

  106. Sohn JW et al (2011) Vibration control of smart hull structure with optimally placed piezoelectric composite actuators. Int J Mech Sci 53:647–659

    Article  Google Scholar 

  107. Kim HS, Sohn JW, Sohn J, Choi SB (2013) Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control. Sensors 13:2131–2147

    Article  Google Scholar 

  108. Kumar GV, Raja S (2012) Sudha V (2012) Finite element analysis and vibration control of a deep composite cylindrical shell using MFC actuators. Smart Mater Res 2090–3561:123–136

    Google Scholar 

  109. Williams RB, Park G, Inman DJ et al (2002) An overview of composite actuators with piezoceramic fibers. Proc SPIE Int Soc Opt Eng 4753:421–427

    Google Scholar 

  110. Leniowska L, Mazan D (2015) MFC sensors and actuators in active vibration control of the circular plate. Arch Acoust 40(2):257–265

    Article  Google Scholar 

  111. Brennan AMC, Mcgowan AMR (1997) Piezoelectric power requirements for active vibration control. Proc SPIE Int Soc Opt Eng 114(9):1542–1570

    Google Scholar 

  112. Wachel JC, Smith DR (1991) Vibration troubleshooting of existing piping systems. Engineering Dynamics Incorporated

    Google Scholar 

  113. Kuhn GF, Morfey CL (1976) Transmission of low-frequency internal sound through pipe walls. J Sound Vib 47(2):147–161

    Article  Google Scholar 

  114. Wachel JC, Tison JD (1987) Vibrations in reciprocating machinery and piping systems. In: Proceeding of the twenty-third turbo machinery symposium

    Google Scholar 

  115. Grant I (2006) Flow induced vibrations in pipes, a finite element approach. Nagpur University

    Google Scholar 

  116. Li B, Moore S (2014) Noise control for fluid power systems. In: Inter.Noise 2014

    Google Scholar 

  117. Pan M, Hillis A, Johnston N (2014) Active control of fluid-bome noise in hydraulic systems using in-series and by-pass structures. In: Ukacc international conference on control, pp 355–360

    Google Scholar 

  118. Silcox RJ, Elliott SJ (1990) Active control of multi-dimensional random sound in ducts. NASA

    Google Scholar 

  119. Variyart W, Brennan MJ (2004) Active control of the n = 2 axial propagating wave in an infinite in vacuo pipe. Smart Mater Struct 13(1):126–133

    Article  Google Scholar 

  120. Carsten B, Jürgen E, Fritz-Otto H (2009) Active control of vibrations in piping systems. In: 20th international conference on structural mechanics in reactor technology

    Google Scholar 

  121. Pan X, Forrest JA, Juniper RG (2009) Optimal design of a control actuator for sound attenuation in a piping system excited by a positive displacement pump. In: Proceedings of ACOUSTICS 2009

    Google Scholar 

  122. Kumar P, Jangid RS, Reddy GR (2013) Response of piping system with semi-active variable stiffness damper under tri-directional seismic excitation. Int J Struct Eng 258(2):130–143

    Google Scholar 

  123. Wang Z, Sun YD (2014) Experimental research on active vibration control of pipe by inertial actuator and adaptive control. J Huaqiao Univ 91(5):725–734

    Google Scholar 

  124. Cheer J, Daley S (2015) Broadband active control of noise and vibration in a fluid-filled pipeline using an array of non-intrusive structural actuators. In: Inter-Noise

    Google Scholar 

  125. Kela L (2010) Adaptive Helmholtz resonator in a hydraulic system. Int J Mech Aerosp Ind Mechatron Manuf Eng 4(8):684–691

    Google Scholar 

  126. Herold S (2012) Noise reduction of a sound field inside a cavity due to an adaptive Helmholtz resonator. In: Proceedings of ISMA 2012-USD 2012, pp 489–504

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, F., Weng, Z., He, L. (2019). Introduction. In: Comprehensive Investigation on Active-Passive Hybrid Isolation and Tunable Dynamic Vibration Absorption. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-3056-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3056-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3055-1

  • Online ISBN: 978-981-13-3056-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics