Skip to main content

Ovarian Epithelial Carcinogenesis

  • Chapter
  • First Online:
Gynecologic and Obstetric Pathology, Volume 2

Abstract

The mortality rate of epithelial ovarian carcinoma (EOC) ranks the highest in all gynecological malignancies, although it is the third common cancer in the female reproductive system. In spite of the progress in reductive surgery and the extensive applications of platinum and paclitaxel and the other first-line chemotherapeutic drugs, the 5-year survival rate of EOC patient is improved merely from 36% in 1975 to 46% in 2011 [1]. The reason is that the definitions and carcinogenetic mechanisms closely related to EOC remain poorly understood. For over a decade, the rapid development of molecular genetics provides a new foundation for our understanding of ovarian epithelial carcinogenesis. In the current chapter, we will focus on the cell origin, pathogenesis, molecular genetics, and clinical applications of different EOC histological subtypes to improve our understanding of this deadly disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Ahmed N, Thompson EW, Quinn MA. Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. J Cell Physiol. 2007;213:581–8.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng W, Liu J, Yoshida H, et al. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med. 2005;11:531–7.

    Article  CAS  PubMed  Google Scholar 

  4. De Santis G, Miotti S, Mazzi M, et al. E-cadherin directly contributes to PI3K/AKT activation by engaging the PI3K-p85 regulatory subunit to adherens junctions of ovarian carcinoma cells. Oncogene. 2009;28:1206–17.

    Article  PubMed  CAS  Google Scholar 

  5. Katre R, Morani AK, Prasad SR, et al. Tumors and pseudotumors of the secondary mullerian system: review with emphasis on cross-sectional imaging findings. AJR Am J Roentgenol. 2010;195:1452–9.

    Article  PubMed  Google Scholar 

  6. Lauchlan SC. The secondary Mullerian system. Obstet Gynecol Surv. 1972;27:133–46.

    Article  CAS  PubMed  Google Scholar 

  7. Shih Ie M, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004;164:1511–8.

    Article  PubMed  Google Scholar 

  8. Kurman RJ, Shih Ie M. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010;34:433–43.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kurman RJ, Shih Ie M. The dualistic model of ovarian carcinogenesis: revisited, revised, and expanded. Am J Pathol. 2016;186:733–47.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Espinosa I, Catasus L, Canet B, et al. Gene expression analysis identifies two groups of ovarian high-grade serous carcinomas with different prognosis. Mod Pathol. 2011;24:846–54.

    Article  CAS  PubMed  Google Scholar 

  11. Silva EG. The origin of epithelial neoplasms of the ovary: an alternative view. Adv Anat Pathol. 2016;23:50–7.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Chang DY, Mercado-Uribe I, et al. Sex-determining region Y-box 2 expression predicts poor prognosis in human ovarian carcinoma. Hum Pathol. 2012;43:1405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang J, Guo X, Chang DY, et al. CD133 expression associated with poor prognosis in ovarian cancer. Mod Pathol. 2012;25:456–64.

    Article  CAS  PubMed  Google Scholar 

  14. Kenda Suster N, Smrkolj S, Virant-Klun I. Putative stem cells and epithelial-mesenchymal transition revealed in sections of ovarian tumor in patients with serous ovarian carcinoma using immunohistochemistry for vimentin and pluripotency-related markers. J Ovarian Res. 2017;10:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Flesken-Nikitin A, Hwang CI, Cheng CY, et al. Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature. 2013;495:241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Virant-Klun I, Kenda-Suster N, Smrkolj S. Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res. 2016;9:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ng A, Barker N. Ovary and fimbrial stem cells: biology, niche and cancer origins. Nat Rev Mol Cell Biol. 2015;16:625–38.

    Article  CAS  PubMed  Google Scholar 

  18. Silva EG, Tornos C, Deavers M, et al. Induction of epithelial neoplasms in the ovaries of Guinea pigs by estrogenic stimulation. Gynecol Oncol. 1998;71:240–6.

    Article  CAS  PubMed  Google Scholar 

  19. Silva EG, Tornos C, Fritsche HA Jr, et al. The induction of benign epithelial neoplasms of the ovaries of Guinea pigs by testosterone stimulation: a potential animal model. Mod Pathol. 1997;10:879–83.

    CAS  PubMed  Google Scholar 

  20. Liu J, Yang G, Thompson-Lanza JA, et al. A genetically defined model for human ovarian cancer. Cancer Res. 2004;64:1655–63.

    Article  CAS  PubMed  Google Scholar 

  21. Yang G, Rosen DG, Zhang Z, et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci U S A. 2006;103:16472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang G, Rosen DG, Liu G, et al. CXCR2 promotes ovarian cancer growth through dysregulated cell cycle, diminished apoptosis, and enhanced angiogenesis. Clin Cancer Res. 2010;16:3875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schauer IG, Zhang J, Xing Z, et al. Interleukin-1beta promotes ovarian tumorigenesis through a p53/NF-kappaB-mediated inflammatory response in stromal fibroblasts. Neoplasia. 2013;15:409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Liu J. Tumor stroma as targets for cancer therapy. Pharmacol Ther. 2013;137:200–15.

    Article  CAS  PubMed  Google Scholar 

  25. Cardenas C, Alvero AB, Yun BS, et al. Redefining the origin and evolution of ovarian cancer: a hormonal connection. Endocr Relat Cancer. 2016;23:R411–22.

    Article  PubMed  Google Scholar 

  26. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  27. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10:789–99.

    Article  CAS  PubMed  Google Scholar 

  28. Kurman RJ, Vang R, Junge J, et al. Papillary tubal hyperplasia: the putative precursor of ovarian atypical proliferative (borderline) serous tumors, noninvasive implants, and endosalpingiosis. Am J Surg Pathol. 2011;35:1605–14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brucher BL, Jamall IS. Somatic mutation theory - why it’s wrong for most cancers. Cell Physiol Biochem. 2016;38:1663–80.

    Article  PubMed  CAS  Google Scholar 

  30. Niu N, Mercado-Uribe I, Liu J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene. 2017;36:4887–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vanneste E, Voet T, Le Caignec C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15:577–83.

    Article  CAS  PubMed  Google Scholar 

  32. Boyers SP, Diamond MP, Lavy G, et al. The effect of polyploidy on embryo cleavage after in vitro fertilization in humans. Fertil Steril. 1987;48:624–7.

    Article  CAS  PubMed  Google Scholar 

  33. Chavez SL, Loewke KE, Han J, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251.

    Article  PubMed  CAS  Google Scholar 

  34. Niakan KK, Han J, Pedersen RA, et al. Human pre-implantation embryo development. Development. 2012;139:829–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol. 2011;27:585–610.

    Article  CAS  PubMed  Google Scholar 

  36. Fox DT, Duronio RJ. Endoreplication and polyploidy: insights into development and disease. Development. 2013;140:3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Orr-Weaver TL. When bigger is better: the role of polyploidy in organogenesis. Trends Genet. 2015;31:307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zielke N, Edgar BA, DePamphilis ML. Endoreplication. Cold Spring Harb Perspect Biol. 2013;5:a012948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lee HO, Davidson JM, Duronio RJ. Endoreplication: polyploidy with purpose. Genes Dev. 2009;23:2461–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Malpica A, Deavers MT, Lu K, et al. Grading ovarian serous carcinoma using a two-tier system. Am J Surg Pathol. 2004;28:496–504.

    Article  PubMed  Google Scholar 

  41. Sharma S, Zeng JY, Zhuang CM, et al. Small-molecule inhibitor BMS-777607 induces breast cancer cell polyploidy with increased resistance to cytotoxic chemotherapy agents. Mol Cancer Ther. 2013;12:725–36.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang S, Mercado-Uribe I, Xing Z, et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene. 2014;33:116–28.

    Article  CAS  PubMed  Google Scholar 

  43. Chen S, Stout JR, Dharmaiah S, et al. Transient endoreplication down-regulates the kinesin-14 HSET and contributes to genomic instability. Mol Biol Cell. 2016;27:2911–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Erenpreisa J, Kalejs M, Cragg MS. Mitotic catastrophe and endomitosis in tumour cells: an evolutionary key to a molecular solution. Cell Biol Int. 2005;29:1012–8.

    Article  CAS  PubMed  Google Scholar 

  45. Niu N, Zhang J, Zhang N, et al. Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogene. 2016;5:e281.

    Article  CAS  Google Scholar 

  46. Zhang S, Mercado-Uribe I, Sood A, et al. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells. Genes Cancer. 2016;7:60–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu J. The dualistic origin of human tumors. Semin Cancer Biol. 2018. pii: S1044-579X(18)30023-3. https://doi.org/10.1016/j.semcancer.2018.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lucchetta EM, Ohlstein B. Amitosis of polyploid cells regenerates functional stem cells in the drosophila intestine. Cell Stem Cell. 2017;20:609–620.e606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Crum CP, Drapkin R, Miron A, et al. The distal fallopian tube: a new model for pelvic serous carcinogenesis. Curr Opin Obstet Gynecol. 2007;19:3–9.

    Article  PubMed  Google Scholar 

  50. Levanon K, Crum C, Drapkin R. New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J Clin Oncol. 2008;26:5284–93.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Callahan MJ, Crum CP, Medeiros F, et al. Primary fallopian tube malignancies in BRCA-positive women undergoing surgery for ovarian cancer risk reduction. J Clin Oncol. 2007;25:3985–90.

    Article  PubMed  Google Scholar 

  52. Kurman RJ, International Agency for Research on Cancer., World Health Organization. WHO classification of tumours of female reproductive organs. Lyon: International Agency for Research on Cancer; 2014.

    Google Scholar 

  53. Malpica A, Deavers MT, Tornos C, et al. Interobserver and intraobserver variability of a two-tier system for grading ovarian serous carcinoma. Am J Surg Pathol. 2007;31:1168–74.

    Article  PubMed  Google Scholar 

  54. Li J, Abushahin N, Pang S, et al. Tubal origin of ‘ovarian’ low-grade serous carcinoma. Mod Pathol. 2011;24:1488–99.

    Article  CAS  PubMed  Google Scholar 

  55. Li J, Fadare O, Xiang L, et al. Ovarian serous carcinoma: recent concepts on its origin and carcinogenesis. J Hematol Oncol. 2012;5:8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Silva EG, Gershenson DM, Malpica A, et al. The recurrence and the overall survival rates of ovarian serous borderline neoplasms with noninvasive implants is time dependent. Am J Surg Pathol. 2006;30:1367–71.

    Article  PubMed  Google Scholar 

  57. Mayr D, Hirschmann A, Lohrs U, et al. KRAS and BRAF mutations in ovarian tumors: a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol Oncol. 2006;103:883–7.

    Article  CAS  PubMed  Google Scholar 

  58. Singer G, Oldt R 3rd, Cohen Y, et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 2003;95:484–6.

    Article  CAS  PubMed  Google Scholar 

  59. Ho CL, Kurman RJ, Dehari R, et al. Mutations of BRAF and KRAS precede the development of ovarian serous borderline tumors. Cancer Res. 2004;64:6915–8.

    Article  CAS  PubMed  Google Scholar 

  60. Wong KK, Tsang YT, Deavers MT, et al. BRAF mutation is rare in advanced-stage low-grade ovarian serous carcinomas. Am J Pathol. 2010;177:1611–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singer G, Kurman RJ, Chang HW, et al. Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol. 2002;160:1223–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuo KT, Guan B, Feng Y, et al. Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes in low-grade and high-grade carcinomas. Cancer Res. 2009;69:4036–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vang R, Shih Ie M, Kurman RJ. Ovarian low-grade and high-grade serous carcinoma: pathogenesis, clinicopathologic and molecular biologic features, and diagnostic problems. Adv Anat Pathol. 2009;16:267–82.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhai Y, Kuick R, Tipton C, et al. Arid1a inactivation in an Apc- and Pten-defective mouse ovarian cancer model enhances epithelial differentiation and prolongs survival. J Pathol. 2016;238:21–30.

    Article  CAS  PubMed  Google Scholar 

  65. Lee Y, Miron A, Drapkin R, et al. A candidate precursor to serous carcinoma that originates in the distal fallopian tube. J Pathol. 2007;211:26–35.

    Article  CAS  PubMed  Google Scholar 

  66. Kuhn E, Kurman RJ, Vang R, et al. TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma--evidence supporting the clonal relationship of the two lesions. J Pathol. 2012;226:421–6.

    Article  CAS  PubMed  Google Scholar 

  67. O'Shannessy DJ, Jackson SM, Twine NC, et al. Gene expression analyses support fallopian tube epithelium as the cell of origin of epithelial ovarian cancer. Int J Mol Sci. 2013;14:13687–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Marquez RT, Baggerly KA, Patterson AP, et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin Cancer Res. 2005;11:6116–26.

    Article  CAS  PubMed  Google Scholar 

  69. Kuhn E, Meeker A, Wang TL, et al. Shortened telomeres in serous tubal intraepithelial carcinoma: an early event in ovarian high-grade serous carcinogenesis. Am J Surg Pathol. 2010;34:829–36.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Perets R, Wyant GA, Muto KW, et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer Cell. 2013;24:751–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim J, Coffey DM, Ma L, et al. The ovary is an alternative site of origin for high-grade serous ovarian cancer in mice. Endocrinology. 2015;156:1975–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Falconer H, Yin L, Gronberg H, et al. Ovarian cancer risk after salpingectomy: a nationwide population-based study. J Natl Cancer Inst. 2015;107. pii: dju410

    Google Scholar 

  73. Levanon K, Ng V, Piao HY, et al. Primary ex vivo cultures of human fallopian tube epithelium as a model for serous ovarian carcinogenesis. Oncogene. 2010;29:1103–13.

    Article  CAS  PubMed  Google Scholar 

  74. Jarboe E, Folkins A, Nucci MR, et al. Serous carcinogenesis in the fallopian tube: a descriptive classification. Int J Gynecol Pathol. 2008;27:1–9.

    Article  PubMed  Google Scholar 

  75. Kindelberger DW, Lee Y, Miron A, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am J Surg Pathol. 2007;31:161–9.

    Article  PubMed  Google Scholar 

  76. Przybycin CG, Kurman RJ, Ronnett BM, et al. Are all pelvic (nonuterine) serous carcinomas of tubal origin? Am J Surg Pathol. 2010;34:1407–16.

    Article  PubMed  Google Scholar 

  77. Singh N, Gilks CB, Wilkinson N, et al. The secondary Mullerian system, field effect, BRCA, and tubal fimbria: our evolving understanding of the origin of tubo-ovarian high-grade serous carcinoma and why assignment of primary site matters. Pathology. 2015;47:423–31.

    Article  PubMed  Google Scholar 

  78. Banet N, Kurman RJ. Two types of ovarian cortical inclusion cysts: proposed origin and possible role in ovarian serous carcinogenesis. Int J Gynecol. 2015;34:3–8.

    Article  CAS  Google Scholar 

  79. Boyd C, McCluggage WG. Low-grade ovarian serous neoplasms (low-grade serous carcinoma and serous borderline tumor) associated with high-grade serous carcinoma or undifferentiated carcinoma: report of a series of cases of an unusual phenomenon. Am J Surg Pathol. 2012;36:368–75.

    Article  PubMed  Google Scholar 

  80. Soslow RA, Han G, Park KJ, et al. Morphologic patterns associated with BRCA1 and BRCA2 genotype in ovarian carcinoma. Mod Pathol. 2012;25:625–36.

    Article  CAS  PubMed  Google Scholar 

  81. Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature. 2015;521:489–94.

    Article  CAS  PubMed  Google Scholar 

  82. Verhaak RG, Tamayo P, Yang JY, et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2013;123:517–25.

    CAS  PubMed  Google Scholar 

  83. Abou-Taleb H, Yamaguchi K, Matsumura N, et al. Comprehensive assessment of the expression of the SWI/SNF complex defines two distinct prognostic subtypes of ovarian clear cell carcinoma. Oncotarget. 2016;7:54758–70.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bossuyt V, Medeiros F, Drapkin R, et al. Adenofibroma of the fimbria: a common entity that is indistinguishable from ovarian adenofibroma. Int J Gynecol Pathol. 2008;27:390–7.

    Article  PubMed  Google Scholar 

  85. Nakayama K, Nakayama N, Jinawath N, et al. Amplicon profiles in ovarian serous carcinomas. Int J Cancer. 2007;120:2613–7.

    Article  CAS  PubMed  Google Scholar 

  86. Salvador S, Rempel A, Soslow RA, et al. Chromosomal instability in fallopian tube precursor lesions of serous carcinoma and frequent monoclonality of synchronous ovarian and fallopian tube mucosal serous carcinoma. Gynecol Oncol. 2008;110:408–17.

    Article  CAS  PubMed  Google Scholar 

  87. Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108:18032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Norquist BM, Garcia RL, Allison KH, et al. The molecular pathogenesis of hereditary ovarian carcinoma: alterations in the tubal epithelium of women with BRCA1 and BRCA2 mutations. Cancer. 2010;116:5261–71.

    Article  CAS  PubMed  Google Scholar 

  89. Deligdisch L, Penault-Llorca F, Schlosshauer P, et al. Stage I ovarian carcinoma: different clinical pathologic patterns. Fertil Steril. 2007;88:906–10.

    Article  PubMed  Google Scholar 

  90. Kurman RJ, Shih Ie M. Seromucinous tumors of the ovary. What’s in a name? Int J Gynecol Pathol. 2016;35:78–81.

    Article  PubMed  PubMed Central  Google Scholar 

  91. McCluggage WG. My approach to and thoughts on the typing of ovarian carcinomas. J Clin Pathol. 2008;61:152–63.

    Article  CAS  PubMed  Google Scholar 

  92. Bulun SE. Endometriosis. N Engl J Med. 2009;360:268–79.

    Article  CAS  PubMed  Google Scholar 

  93. Zheng W, Li N, Wang J, et al. Initial endometriosis showing direct morphologic evidence of metaplasia in the pathogenesis of ovarian endometriosis. Int J Gynecol Pathol. 2005;24:164–72.

    Article  PubMed  Google Scholar 

  94. Yuan Z, Wang L, Wang Y, et al. Tubal origin of ovarian endometriosis. Mod Pathol. 2014;27:1154–62.

    Article  CAS  PubMed  Google Scholar 

  95. Wu R, Zhai Y, Kuick R, et al. Impact of oviductal versus ovarian epithelial cell of origin on ovarian endometrioid carcinoma phenotype in the mouse. J Pathol. 2016;240:341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cochrane DR, Tessier-Cloutier B, Lawrence KM, et al. Clear cell and endometrioid carcinomas: are their differences attributable to distinct cells of origin? J Pathol. 2017;243:26–36.

    Article  CAS  PubMed  Google Scholar 

  97. Anglesio MS, Papadopoulos N, Ayhan A, et al. Cancer-associated mutations in endometriosis without cancer. N Engl J Med. 2017;376:1835–48.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wiegand KC, Shah SP, Al-Agha OM, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363:1532–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jones S, Wang TL, Shih Ie M, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330:228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wu CH, Mao TL, Vang R, et al. Endocervical-type mucinous borderline tumors are related to endometrioid tumors based on mutation and loss of expression of ARID1A. Int J Gynecol Pathol. 2012;31:297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Guan B, Rahmanto YS, Wu RC, et al. Roles of deletion of Arid1a, a tumor suppressor, in mouse ovarian tumorigenesis. J Natl Cancer Inst. 2014;106. pii: dju146

    Google Scholar 

  102. Chandler RL, Damrauer JS, Raab JR, et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6:6118.

    Article  CAS  PubMed  Google Scholar 

  103. Chandler RL, Raab JR, Vernon M, et al. Global gene expression profiling of a mouse model of ovarian clear cell carcinoma caused by ARID1A and PIK3CA mutations implicates a role for inflammatory cytokine signaling. Genom Data. 2015;5:329–32.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cai KQ, Albarracin C, Rosen D, et al. Microsatellite instability and alteration of the expression of hMLH1 and hMSH2 in ovarian clear cell carcinoma. Hum Pathol. 2004;35:552–9.

    Article  CAS  PubMed  Google Scholar 

  105. Liu J, Albarracin CT, Chang KH, et al. Microsatellite instability and expression of hMLH1 and hMSH2 proteins in ovarian endometrioid cancer. Mod Pathol. 2004;17:75–80.

    Article  PubMed  CAS  Google Scholar 

  106. Yamaguchi K, Huang Z, Matsumura N, et al. Epigenetic determinants of ovarian clear cell carcinoma biology. Int J Cancer. 2014;135:585–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Amano Y, Mandai M, Yamaguchi K, et al. Metabolic alterations caused by HNF1beta expression in ovarian clear cell carcinoma contribute to cell survival. Oncotarget. 2015;6:26002–17.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rambau PF, McIntyre JB, Taylor J, et al. Morphologic reproducibility, genotyping, and immunohistochemical profiling do not support a category of Seromucinous carcinoma of the ovary. Am J Surg Pathol. 2017;41:685–95.

    Article  PubMed  Google Scholar 

  109. Ronnett BM, Shmookler BM, Sugarbaker PH, et al. Pseudomyxoma peritonei: new concepts in diagnosis, origin, nomenclature, and relationship to mucinous borderline (low malignant potential) tumors of the ovary. Anat Pathol. 1997;2:197–226.

    CAS  PubMed  Google Scholar 

  110. Zaino RJ, Brady MF, Lele SM, et al. Advanced stage mucinous adenocarcinoma of the ovary is both rare and highly lethal: a gynecologic oncology group study. Cancer. 2011;117:554–62.

    Article  PubMed  Google Scholar 

  111. Snir OL, Buza N, Hui P. Mucinous epithelial tumours arising from ovarian mature teratomas: a tissue genotyping study. Histopathology. 2016;69:383–92.

    Article  PubMed  Google Scholar 

  112. Fujii K, Yamashita Y, Yamamoto T, et al. Ovarian mucinous tumors arising from mature cystic teratomas–a molecular genetic approach for understanding the cellular origin. Hum Pathol. 2014;45:717–24.

    Article  CAS  PubMed  Google Scholar 

  113. Seidman JD, Khedmati F. Exploring the histogenesis of ovarian mucinous and transitional cell (Brenner) neoplasms and their relationship with Walthard cell nests: a study of 120 tumors. Arch Pathol Lab Med. 2008;132:1753–60.

    PubMed  Google Scholar 

  114. Pejovic T, Burki N, Odunsi K, et al. Well-differentiated mucinous carcinoma of the ovary and a coexisting Brenner tumor both exhibit amplification of 12q14-21 by comparative genomic hybridization. Gynecol Oncol. 1999;74:134–7.

    Article  CAS  PubMed  Google Scholar 

  115. Wang Y, Wu RC, Shwartz LE, et al. Clonality analysis of combined Brenner and mucinous tumours of the ovary reveals their monoclonal origin. J Pathol. 2015;237:146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mackenzie R, Kommoss S, Winterhoff BJ, et al. Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms. BMC Cancer. 2015;15:415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Ryland GL, Hunter SM, Doyle MA, et al. RNF43 is a tumour suppressor gene mutated in mucinous tumours of the ovary. J Pathol. 2013;229:469–76.

    Article  CAS  PubMed  Google Scholar 

  118. Roma AA, Masand RP. Ovarian Brenner tumors and Walthard nests: a histologic and immunohistochemical study. Hum Pathol. 2014;45:2417–22.

    Article  CAS  PubMed  Google Scholar 

  119. Kuhn E, Ayhan A, Shih Ie M, et al. Ovarian Brenner tumour: a morphologic and immunohistochemical analysis suggesting an origin from fallopian tube epithelium. Eur J Cancer. 2013;49:3839–49.

    Article  PubMed  Google Scholar 

  120. Cuatrecasas M, Catasus L, Palacios J, et al. Transitional cell tumors of the ovary: a comparative clinicopathologic, immunohistochemical, and molecular genetic analysis of Brenner tumors and transitional cell carcinomas. Am J Surg Pathol. 2009;33:556–67.

    Article  PubMed  Google Scholar 

  121. Buys SS, Partridge E, Black A, et al. Effect of screening on ovarian cancer mortality: the prostate, lung, colorectal and ovarian (PLCO) cancer screening randomized controlled trial. JAMA. 2011;305:2295–303.

    Article  CAS  PubMed  Google Scholar 

  122. Bristow RE, Tomacruz RS, Armstrong DK, et al. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol. 2002;20:1248–59.

    Article  PubMed  Google Scholar 

  123. Medeiros F, Muto MG, Lee Y, et al. The tubal fimbria is a preferred site for early adenocarcinoma in women with familial ovarian cancer syndrome. Am J Surg Pathol. 2006;30:230–6.

    Article  PubMed  Google Scholar 

  124. Fishman DA, Cohen L, Blank SV, et al. The role of ultrasound evaluation in the detection of early-stage epithelial ovarian cancer. Am J Obstet Gynecol. 2005;192:1214–21; discussion 1221–1212

    Article  PubMed  Google Scholar 

  125. Tate TH, Baggett B, Rice PF, et al. Multispectral fluorescence imaging of human ovarian and fallopian tube tissue for early-stage cancer detection. J Biomed Opt. 2016;21:56005.

    Article  PubMed  Google Scholar 

  126. Grabowska-Derlatka L, Derlatka P, Szeszkowski W, et al. Diffusion-weighted imaging of small peritoneal implants in “potentially” early-stage ovarian cancer. Biomed Res Int. 2016;2016:9254742.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Wang Y, Sundfeldt K, Mateoiu C, et al. Diagnostic potential of tumor DNA from ovarian cyst fluid. eLife. 2016;5. pii: e15175

    Google Scholar 

  128. Schenberg T, Mitchell G. Prophylactic bilateral salpingectomy as a prevention strategy in women at high-risk of ovarian cancer: a mini-review. Front Oncol. 2014;4:21.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Purdie DM, Bain CJ, Siskind V, et al. Ovulation and risk of epithelial ovarian cancer. Int J Cancer. 2003;104:228–32.

    Article  CAS  PubMed  Google Scholar 

  130. Yang-Hartwich Y, Gurrea-Soteras M, Sumi N, et al. Ovulation and extra-ovarian origin of ovarian cancer. Sci Rep. 2014;4:6116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Beral V, Doll R, Hermon C, et al. Ovarian cancer and oral contraceptives: collaborative reanalysis of data from 45 epidemiological studies including 23,257 women with ovarian cancer and 87,303 controls. Lancet. 2008;371:303–14.

    Article  CAS  PubMed  Google Scholar 

  132. Fathalla MF. Non-hormonal interruption of incessant ovulation as a potential approach for ovarian cancer prevention. Int J Gynaecol Obstet. 2016;132:356–8.

    Article  CAS  PubMed  Google Scholar 

  133. Ciccone MA, Maoz A, Casabar JK, et al. Clinical outcome of treatment with serine-threonine kinase inhibitors in recurrent epithelial ovarian cancer: a systematic review of literature. Expert Opin Investig Drugs. 2016;25:781–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Spreafico A, Oza AM, Clarke BA, et al. Genotype-matched treatment for patients with advanced type I epithelial ovarian cancer (EOC). Gynecol Oncol. 2017;144:250–5.

    Article  CAS  PubMed  Google Scholar 

  135. Bitler BG, Aird KM, Garipov A, et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 2015;21:231–8.

    Article  CAS  PubMed  Google Scholar 

  136. Bitler BG, Aird KM, Zhang R. Epigenetic synthetic lethality in ovarian clear cell carcinoma: EZH2 and ARID1A mutations. Mol Cell Oncol. 2016;3:e1032476.

    Article  PubMed  CAS  Google Scholar 

  137. Shen J, Peng Y, Wei L, et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 2015;5:752–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. George A, Kaye S, Banerjee S. Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer. Nat Rev Clin Oncol. 2017;14:284–96.

    Article  CAS  PubMed  Google Scholar 

  139. Gonzalez Martin A. Progress in PARP inhibitors beyond BRCA mutant recurrent ovarian cancer? Lancet Oncol. 2017;18:8–9.

    Article  PubMed  Google Scholar 

  140. Alipour S, Zoghi S, Khalili N, et al. Specific immunotherapy in ovarian cancer: a systematic review. Immunotherapy. 2016;8:1193–204.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jinsong Liu is supported by MD Anderson Cancer Center SPORE and Moonshot Program in Ovarian Cancer. Jing Zhang is supported by National Natural Science Foundation of China (NSFC, No. 81372783 and 81572545). Author’s affiliation: 1. Department of Pathology, Xijing hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China 710032; 2. Department of Pathology, 3. Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, P.O. Box 301439, Houston, TX 77230-1439, USA. Department of Correspondence: jliu@mdanderson.org

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Silva, E.G., Sood, A.K., Liu, J. (2019). Ovarian Epithelial Carcinogenesis. In: Zheng, W., Fadare, O., Quick, C., Shen, D., Guo, D. (eds) Gynecologic and Obstetric Pathology, Volume 2. Springer, Singapore. https://doi.org/10.1007/978-981-13-3019-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3019-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3018-6

  • Online ISBN: 978-981-13-3019-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics