Skip to main content

Gynecologic Cytology

  • Chapter
  • First Online:
Gynecologic and Obstetric Pathology, Volume 2

Abstract

The American Cancer Society’s estimates about 12,820 new cases of invasive cervical cancer will be diagnosed each year in the United States. About 79 million Americans are infected with HPV. The Bethesda System for reporting cervical cytology has forged our understanding of HPV biology and provides an infrastructure for systematic and evidence-based cervical cancer screening and management guidelines. Direct detection of HPV, e.g., by testing for HPV DNA or HPV-produced mRNA of known oncogenic genes, has found its place in new screening strategies. HPV 16 and 18 being the most prevalent and most oncogenic HPV types resulted in need for HPV genotyping.

HPV DNA detection-based methods are currently the most suitable way of approaching this issue and have led to the development of different platforms. Testing for HPV status in formalin-fixed, paraffin-embedded histological samples, mainly for prognostic reasons (but also as an aid in differential diagnosis), is mainly done using either DNA in situ hybridization or p16 immunohistochemistry.

Pelvic washings (PW) are now routinely performed for staging of gynecologic malignancies, and results are significant component of the final pathologic and clinical stage of ovarian cancers.

Cytologic evaluation of PW starts with clinical history. As pelvic washings are routinely performed in patients who present with known gynecologic malignancy or with imaging findings of a “lesion or mass” in gynecologic tract, it is essential that the pathologist interpreting washing cytology is familiar with the clinical findings, histologic tumor types that occur in various parts of the gynecologic tract, corresponding surgical specimen, and benign pitfalls and mimickers. The peritoneal surface in women can give rise to various benign Mullerian lesions. It is important to be familiar with the cytomorphologic characteristics of these lesions to avoid misinterpreting them as malignant. Primary peritoneal lesions of the pelvic peritoneum encountered in gynecologic pathology include various benign, low malignant potential, and malignant tumors of both mesothelial and Mullerian origin. Interpretation errors can be significantly reduced if immunohistochemical stains are applied to aid in the identification of malignant cells. The best and most helpful antibody panel in the diagnostic workup of pelvic washings should include stains that can identify a second population of cells, characterize them, and localize or suggest a primary site. Minimally invasive surgical procedures (robotic and laparoscopic hysterectomy) have been associated with various histologic artifacts due to “displacement” of tissue fragments of endometrial cancer into vascular channels and possibly through the fallopian tubes into peritoneal surfaces and therefore are detected in pelvic washings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Thurah L, Bonde J, Hoa Lam JU, Rebolj M. Concordant testing results between various human papillomavirus assays in primary cervical cancer screening: systematic review. Clin Microbiol Infect. 2018;24(1):29–36.

    Article  PubMed  Google Scholar 

  2. Fackler MJ, McVeigh M, Mehrotra J, Blum MA, Lange J, Lapides A, et al. Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Res. 2004;64(13):4442–52.

    Article  CAS  PubMed  Google Scholar 

  3. Gential HPV infection-CDC fact sheet 2017 [cited 2017 June 29]. Available from: https://www.cdc.gov/std/hpv/hpv-factsheet-march-2017.pdf

  4. Naylor B. The century for cytopathology. Acta Cytol. 2000;44(5):709–25.

    Article  CAS  PubMed  Google Scholar 

  5. Babes A. Diagnostic du cancer du col utérin par les frottis (diagnosis of cancer of the uterine cervix by smears). Presse Med. 1928;29:451–4.

    Google Scholar 

  6. Diamantis A, Magiorkinis E, Androutsos G. What's in a name? Evidence that Papanicolaou, not babes, deserves credit for the pap test. Diagn Cytopathol. 2010;38(7):473–6.

    Article  CAS  PubMed  Google Scholar 

  7. Papanicolaou G, Traut H. The diagnostic value of vaginal smears in carcinoma of the uterus. Am J Obstet Gynecol. 1941;42:193–206.

    Article  Google Scholar 

  8. Chantziantoniou N. The wars against cervical cancer. J Am Soc Cytopathol. 2014;2:275–9.

    Article  Google Scholar 

  9. Papanicolaou G. Atlas of Exfoliative cytology. Cambridge: Harvard University Press; 1954.

    Google Scholar 

  10. Anderson GH, Boyes DA, Benedet JL, Le Riche JC, Matisic JP, Suen KC, et al. Organisation and results of the cervical cytology screening programme in British Columbia, 1955-85. Br Med J (Clin Res Ed). 1988;296(6627):975–8.

    Article  CAS  Google Scholar 

  11. Christopherson WM, Scott MA. Trends in mortality from uterine cancer in relation to mass screening. Acta Cytol. 1977;21(1):5–9.

    CAS  PubMed  Google Scholar 

  12. Aisner S, Austin M, Bishop J, et al. Cervical cytology practice guidelines. Acta Cytol. 2001;45(02):201–26.

    Article  Google Scholar 

  13. Vooijs GP, Elias A, van der Graaf Y, Poelen-van de Berg M. The influence of sample takers on the cellular composition of cervical smears. Acta Cytol. 1986;30(3):251–7.

    CAS  PubMed  Google Scholar 

  14. McGoogan E, Colgan TJ, Ramzy I, Cochand-Priollet B, Davey DD, Grohs HK, et al. Cell preparation methods and criteria for sample adequacy. International academy of cytology task force summary. Diagnostic cytology towards the 21st century: an international expert conference and tutorial. Acta Cytol. 1998;42(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  15. Ho GY, Burk RD, Klein S, Kadish AS, Chang CJ, Palan P, et al. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst. 1995;87(18):1365–71.

    Article  CAS  PubMed  Google Scholar 

  16. Hingorani SR, Tuveson DA. In search of an early warning system for pancreatic cancer. Cancer Biol Ther. 2003;2(1):84–6.

    Article  PubMed  Google Scholar 

  17. NCCLS. Papanicolaou Technique; Approved Guideline. NCCLS Document 15-A (ISBN 1-56238-238-1) 1994;14(8).

    Google Scholar 

  18. Moyer VA. Force USPST. Screening for cervical cancer: U.S. preventive services task force recommendation statement. Ann Intern Med. 2012;156(12):880–91, W312

    Article  PubMed  Google Scholar 

  19. Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. CA Cancer J Clin. 2012;62(3):147–72.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boon ME, de Graaff Guilloud JC, Rietveld WJ. Analysis of five sampling methods for the preparation of cervical smears. Acta Cytol. 1989;33(6):843–8.

    CAS  PubMed  Google Scholar 

  21. Hong SM, Kelly D, Griffith M, Omura N, Li A, Li CP, et al. Multiple genes are hypermethylated in intraductal papillary mucinous neoplasms of the pancreas. Mod Pathol. 2008;21(12):1499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu Y, Xie H, Liu Y, Liu W, Liu M, Tang H. miR-484 suppresses proliferation and epithelial-mesenchymal transition by targeting ZEB1 and SMAD2 in cervical cancer cells. Cancer Cell Int. 2017;17:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kurman RJ, Solomon D, SpringerLink (Online Service). The Bethesda system for reporting cervical/vaginal cytologic diagnoses definitions, criteria, and explanatory notes for terminology and specimen adequacy. New York, NY: Springer; 1994. https://doi.org/10.1007/978-1-4684-0201-8.

    Book  Google Scholar 

  24. Solomon D, Nayar R. The Bethesda system for reporting cervical cytology: definitions, criteria, and explanatory notes, vol. xxiii. 2nd ed. New York: Springer; 2004. p. 191.

    Book  Google Scholar 

  25. Nayar R, Wilbur DC, SpringerLink (Online Service). The Bethesda system for reporting cervical cytology definitions, criteria, and explanatory notes. https://doi.org/10.1007/978-3-319-11074-5.

    Google Scholar 

  26. Massad LS, Einstein MH, Huh WK, Katki HA, Kinney WK, Schiffman M, et al. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. J Low Genit Tract Dis. 2013;17(5 Suppl 1):S1–S27.

    Article  PubMed  Google Scholar 

  27. Lin SN, Taylor J, Alperstein S, Hoda R, Holcomb K. Does speculum lubricant affect liquid-based Papanicolaou test adequacy? Cancer Cytopathol. 2014;122(3):221–6.

    Article  PubMed  Google Scholar 

  28. Feit TD, Mowry DA. Interference potential of personal lubricants and vaginal medications on ThinPrep pap tests. J Am Board Fam Med. 2011;24(2):181–6.

    Article  PubMed  Google Scholar 

  29. Sweeney BJ, Haq Z, Happel JF, Weinstein B, Schneider D. Comparison of the effectiveness of two liquid-based Papanicolaou systems in the handling of adverse limiting factors, such as excessive blood. Cancer. 2006;108(1):27–31.

    Article  PubMed  Google Scholar 

  30. Kenyon S, Sweeney BJ, Happel J, Marchilli GE, Weinstein B, Schneider D. Comparison of BD Surepath and ThinPrep pap systems in the processing of mucus-rich specimens. Cancer Cytopathol. 2010;118(5):244–9.

    Article  PubMed  Google Scholar 

  31. Eversole GM, Moriarty AT, Schwartz MR, Clayton AC, Souers R, Fatheree LA, et al. Practices of participants in the college of american pathologists interlaboratory comparison program in cervicovaginal cytology, 2006. Arch Pathol Lab Med. 2010;134(3):331–5.

    PubMed  Google Scholar 

  32. Wilbur DC, Marianne PU, Nayar R. Computer-assisted interpretation of cervical cytology. In: The Bethesda system for reporting cervical cytology definitions, criteria, and explanatory notes [Internet]. SpringerLink (Online Service). vol. XXIV, 3rd ed. New York: Springer. p. 321. https://doi.org/10.1007/978-3-319-11074-5. 08 illus. in color.

    Google Scholar 

  33. Yancey M, Magelssen D, Demaurez A, Lee RB. Classification of endometrial cells on cervical cytology. Obstet Gynecol. 1990;76(6):1000–5.

    CAS  PubMed  Google Scholar 

  34. Fiorella RM, Cheng J, Kragel PJ. Papanicolaou smears in pregnancy. Positivity of exfoliated cells for human chorionic gonadotropin and human placental lactogen. Acta Cytol. 1993;37(4):451–6.

    CAS  PubMed  Google Scholar 

  35. Crothers BA, Booth CN, Darragh TM, Means MM, Souers RJ, Thomas N, et al. Atrophic vaginitis: concordance and interpretation of slides in the College of American Pathologists Cervicovaginal Interlaboratory Comparison Program in Gynecologic Cytopathology. Arch Pathol Lab Med. 2012;136(11):1332–8.

    Article  PubMed  Google Scholar 

  36. Shield PW, Daunter B, Wright RG. Post-irradiation cytology of cervical cancer patients. Cytopathology. 1992;3(3):167–82.

    Article  CAS  PubMed  Google Scholar 

  37. Colgan TJ, Woodhouse SL, Styer PE, Kennedy M, Davey DD. Reparative changes and the false-positive/false-negative Papanicolaou test: a study from the College of American Pathologists Interlaboratory Comparison Program in Cervicovaginal Cytology. Arch Pathol Lab Med. 2001;125(1):134–40.

    CAS  PubMed  Google Scholar 

  38. Halford JA. Cytological features of chronic follicular cervicitis in liquid-based specimens: a potential diagnostic pitfall. Cytopathology. 2002;13(6):364–70.

    Article  CAS  PubMed  Google Scholar 

  39. Videlefsky A, Grossl N, Denniston M, Sehgal R, Lane JM, Goodenough G. Routine vaginal cuff smear testing in post-hysterectomy patients with benign uterine conditions: when is it indicated? J Am Board Fam Pract. 2000;13(4):233–8.

    Article  CAS  PubMed  Google Scholar 

  40. Nayar R, Wilbur DC. The pap test and Bethesda 2014. Cancer Cytopathol. 2015;123(5):271–81.

    Article  PubMed  Google Scholar 

  41. Barlow JF. The 1988 Bethesda system for cervical vaginal cytology: pros and cons. S D J Med. 1991;44(6):157–8.

    CAS  PubMed  Google Scholar 

  42. Solomon D, Davey D, Kurman R, Moriarty A, O’Connor D, Prey M, et al. The 2001 Bethesda system: terminology for reporting results of cervical cytology. JAMA. 2002;287(16):2114–9.

    Article  PubMed  Google Scholar 

  43. Gupta N, Srinivasan R, Nijhawan R, Rajwanshi A, Dey P, Suri V, et al. Atypical squamous cells and low-grade squamous intraepithelial lesion in cervical cytology: cytohistological correlation and implication for management in a low-resource setting. Cytopathology. 2011;22(3):189–94.

    Article  CAS  PubMed  Google Scholar 

  44. Jones BA, Davey DD. Quality management in gynecologic cytology using interlaboratory comparison. Arch Pathol Lab Med. 2000;124(5):672–81.

    CAS  PubMed  Google Scholar 

  45. Wright TC Jr, Cox JT, Massad LS, Twiggs LB, Wilkinson EJ, Conference AS-sC. 2001 consensus guidelines for the management of women with cervical cytological abnormalities. J Low Genit Tract Dis. 2002;6(2):127–43.

    Article  PubMed  Google Scholar 

  46. Nayar R, Wilbur DC. The pap test and Bethesda 2014. “the reports of my demise have been greatly exaggerated.” (After a quotation from mark twain). Acta Cytol. 2015;59(2):121–32.

    Article  CAS  PubMed  Google Scholar 

  47. Levine PH, Elgert PA, Sun P, Simsir A. Atypical repair on pap smears: clinicopathologic correlates in 647 cases. Diagn Cytopathol. 2005;33(3):214–7.

    Article  PubMed  Google Scholar 

  48. Yelverton CL, Bentley RC, Olenick S, Krigman HR, Johnston WW, Robboy SJ. Epithelial repair of the uterine cervix: assessment of morphologic features and correlations with cytologic diagnosis. Int J Gynecol Pathol. 1996;15(4):338–44.

    Article  CAS  PubMed  Google Scholar 

  49. Abati A, Jaffurs W, Wilder AM. Squamous atypia in the atrophic cervical vaginal smear: a new look at an old problem. Cancer. 1998;84(4):218–25.

    Article  CAS  PubMed  Google Scholar 

  50. Keating JT, Wang HH. Significance of a diagnosis of atypical squamous cells of undetermined significance for Papanicolaou smears in perimenopausal and postmenopausal women. Cancer. 2001;93(2):100–5.

    Article  CAS  PubMed  Google Scholar 

  51. Acs G, Gupta PK, Baloch ZW. Glandular and squamous atypia and intraepithelial lesions in atrophic cervicovaginal smears. One institution’s experience. Acta Cytol. 2000;44(4):611–7.

    Article  CAS  PubMed  Google Scholar 

  52. Kubba LA, Patel K, Du H, Hahn EA, Sturgis CD. Atypical parakeratotic spires and HCII HPV results: correlation in liquid-based cervicovaginal cytology specimens interpreted as ASC-US. Diagn Cytopathol. 2007;35(8):476–81.

    Article  PubMed  Google Scholar 

  53. Abramovich CM, Wasman JK, Siekkinen P, Abdul-Karim FW. Histopathologic correlation of atypical parakeratosis diagnosed on cervicovaginal cytology. Acta Cytol. 2003;47(3):405–9.

    Article  PubMed  Google Scholar 

  54. Darragh TM, Colgan TJ, Thomas Cox J, Heller DS, Henry MR, Luff RD, et al. The lower anogenital squamous terminology standardization project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Int J Gynecol Pathol. 2013;32(1):76–115.

    Article  PubMed  Google Scholar 

  55. Reagan JW, Hamonic MJ. Dysplasia of the uterine cervix. Ann N Y Acad Sci. 1956;63(6):1236–44.

    Article  CAS  PubMed  Google Scholar 

  56. Miller RA, Mody DR, Tams KC, Thrall MJ. Glandular lesions of the cervix in clinical practice: a cytology, histology, and human papillomavirus correlation study from 2 institutions. Arch Pathol Lab Med. 2015;139(11):1431–6.

    Article  PubMed  Google Scholar 

  57. Selvaggi SM. Glandular epithelial abnormalities on thinprep(R) pap tests: clinical and cytohistologic correlation. Diagn Cytopathol. 2016;44(5):389–93.

    Article  PubMed  Google Scholar 

  58. Simsir A, Hwang S, Cangiarella J, Elgert P, Levine P, Sheffield MV, et al. Glandular cell atypia on Papanicolaou smears: interobserver variability in the diagnosis and prediction of cell of origin. Cancer. 2003;99(6):323–30.

    Article  PubMed  Google Scholar 

  59. Ajit D, Gavas S, Joseph S, Rekhi B, Deodhar K, Kane S. Identification of atypical glandular cells in pap smears: is it a hit and miss scenario. Acta Cytol. 2013;57(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  60. Kaferle JE, Malouin JM. Evaluation and management of the AGUS Papanicolaou smear. Am Fam Physician. 2001;63(11):2239–44.

    CAS  PubMed  Google Scholar 

  61. Lee KR, Minter LJ, Granter SR. Papanicolaou smear sensitivity for adenocarcinoma in situ of the cervix. A study of 34 cases. Am J Clin Pathol. 1997;107(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  62. Roberts JM, Thurloe JK. Comparative sensitivities of ThinPrep and Papanicolaou smear for adenocarcinoma in situ (AIS) and combined AIS/high-grade squamous intraepithelial lesion (HSIL): comparison with HSIL. Cancer. 2007;111(6):482–6.

    Article  PubMed  Google Scholar 

  63. Attipoe MF, Sturgis CD. Small cell carcinoma of the uterine cervix in a pregnant patient diagnosed with liquid based cytology and cell block immunocytochemistry. Case Rep Pathol. 2014;2014:971464.

    PubMed  PubMed Central  Google Scholar 

  64. Park HJ, Choi YM, Chung CK, Lee SH, Yim GW, Kim SW, et al. Pap smear screening for small cell carcinoma of the uterine cervix: a case series and review of the literature. J Gynecol Oncol. 2011;22(1):39–43.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Setia N, Goulart RA, Leiman G, Otis CN, Modem R, Pantanowtiz L. Cytomorphology of cervicovaginal melanoma: ThinPrep versus conventional Papanicolaou tests. Cytojournal. 2010;7:25.

    PubMed  PubMed Central  Google Scholar 

  66. Hanley KZ, Tadros TS, Briones AJ, Birdsong GG, Mosunjac MB. Hematologic malignancies of the female genital tract diagnosed on liquid-based pap test: Cytomorphologic features and review of differential diagnoses. Diagn Cytopathol. 2009;37(1):61–7.

    Article  PubMed  Google Scholar 

  67. Hanley KZ, Oprea-Ilies G, Ormenisan C, Seydafkan S, Mosunjac MB. Atypical findings on cervicovaginal smears correlate with cervical involvement by malignant mixed Mullerian tumors of the uterus. Acta Cytol. 2015;59(4):319–24.

    Article  CAS  PubMed  Google Scholar 

  68. Giordano G, Gnetti L, Pilato FP, Viviano L, Silini EM. The role of cervical smear in the diagnosis and management of extrauterine malignancies metastatic to the cervix: three case reports. Diagn Cytopathol. 2010;38(1):41–6.

    PubMed  Google Scholar 

  69. House MG, Guo M, Iacobuzio-Donahue C, Herman JG. Molecular progression of promoter methylation in intraductal papillary mucinous neoplasms (IPMN) of the pancreas. Carcinogenesis. 2003;24(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  70. Biscotti CV, Dawson AE, Dziura B, Galup L, Darragh T, Rahemtulla A, et al. Assisted primary screening using the automated ThinPrep imaging system. Am J Clin Pathol. 2005;123(2):281–7.

    Article  PubMed  Google Scholar 

  71. Schledermann D, Hyldebrandt T, Ejersbo D, Hoelund B. Automated screening versus manual screening: a comparison of the ThinPrep imaging system and manual screening in a time study. Diagn Cytopathol. 2007;35(6):348–52.

    Article  PubMed  Google Scholar 

  72. Dawson AE. Can we change the way we screen? The ThinPrep imaging system. Cancer. 2004;102(6):340–4.

    Article  PubMed  Google Scholar 

  73. Chivukula M, Saad RS, Elishaev E, White S, Mauser N, Dabbs DJ. Introduction of the thin prep imaging system (TIS): experience in a high volume academic practice. Cytojournal. 2007;4:6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lozano R. Comparison of computer-assisted and manual screening of cervical cytology. Gynecol Oncol. 2007;104(1):134–8.

    Article  PubMed  Google Scholar 

  75. Huh WK, Ault KA, Chelmow D, Davey DD, Goulart RA, Garcia FA, et al. Use of primary high-risk human papillomavirus testing for cervical cancer screening: interim clinical guidance. J Low Genit Tract Dis. 2015;19(2):91–6.

    Article  PubMed  Google Scholar 

  76. Lee JS, Kuan L, Oh S, Patten FW, Wilbur DC. A feasibility study of the AutoPap system location-guided screening. Acta Cytol. 1998;42(1):221–6.

    Article  CAS  PubMed  Google Scholar 

  77. Wilbur DC, Prey MU, Miller WM, Pawlick GF, Colgan TJ. The AutoPap system for primary screening in cervical cytology. Comparing the results of a prospective, intended-use study with routine manual practice. Acta Cytol. 1998;42(1):214–20.

    Article  CAS  PubMed  Google Scholar 

  78. Troni GM, Cariaggi MP, Bulgaresi P, Houssami N, Ciatto S. Reliability of sparing Papanicolaou test conventional reading in cases reported as no further review at AutoPap-assisted cytological screening: survey of 30,658 cases with follow-up cytological screening. Cancer. 2007;111(2):93–8.

    Article  PubMed  Google Scholar 

  79. Wilbur DC, Black-Schaffer WS, Luff RD, Abraham KP, Kemper C, Molina JT, et al. The Becton Dickinson FocalPoint GS imaging system: clinical trials demonstrate significantly improved sensitivity for the detection of important cervical lesions. Am J Clin Pathol. 2009;132(5):767–75.

    Article  PubMed  Google Scholar 

  80. Sweeney BJ, Wilbur DC. Effects on cervical cytology screening productivity associated with implementation of the BD FocalPoint guided screener imaging system. Acta Cytol. 2013;57(2):147–52.

    Article  PubMed  Google Scholar 

  81. Deftereos G, Kiviat NB. Human papillomaviruses: cervical cancer and warts. In: Kaslow RASL, Le Duc JW, editors. Viral Infections in humans. 5th ed. New York, NY: Springer; 2014. p. 1063–104.

    Google Scholar 

  82. Deftereos G, Kiviat NB. Detection and clinical management of cervical pathology in the era of HPV. Curr Obstet Gynecol Rep. 2014;3(2):107–15.

    Article  Google Scholar 

  83. Massad LS, Einstein MH, Huh WK, Katki HA, Kinney WK, Schiffman M, et al. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Obstet Gynecol. 2013;121(4):829–46.

    Article  PubMed  Google Scholar 

  84. Mahajan A. Practical issues in the application of p16 immunohistochemistry in diagnostic pathology. Hum Pathol. 2016;51:64–74.

    Article  CAS  PubMed  Google Scholar 

  85. Kerr DA, Sweeney B, Arpin RN 3rd, Ring M, Pitman MB, Wilbur DC, et al. Automated extraction of formalin-fixed, paraffin-embedded tissue for high-risk human papillomavirus testing of head and neck squamous cell carcinomas using the Roche Cobas 4800 system. Arch Pathol Lab Med. 2016;140(8):844–8.

    Article  CAS  PubMed  Google Scholar 

  86. Pettus JR, Wilson TL, Steinmetz HB, Lefferts JA, Tafe LJ. Utility of the Roche Cobas 4800 for detection of high-risk human papillomavirus in formalin-fixed paraffin-embedded oropharyngeal squamous cell carcinoma. Exp Mol Pathol. 2017;102(1):47–9.

    Article  CAS  PubMed  Google Scholar 

  87. Clifford GM, Vaccarella S, Franceschi S, Tenet V, Umulisa MC, Tshomo U, et al. Comparison of two widely used human papillomavirus detection and genotyping methods, GP5+/6+-based PCR followed by reverse line blot hybridization and multiplex type-specific E7-based PCR. J Clin Microbiol. 2016;54(8):2031–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Remmerbach TW, Brinckmann UG, Hemprich A, Chekol M, Kuhndel K, Liebert UG. PCR detection of human papillomavirus of the mucosa: comparison between MY09/11 and GP5+/6+ primer sets. J Clin Virol. 2004;30(4):302–8.

    Article  CAS  PubMed  Google Scholar 

  89. Manos MM, Ting Y, Wright DK, Lewis AJ, Broker TR, Wolinsky SM. The use of polymerase chain reaction amplification for the detection of genital human papillomavirus. In: Furth M, Greaves M, editors. Molecular diagnostics of human cancer. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989. p. 209–14.

    Google Scholar 

  90. Kleter B, van Doorn LJ, Schrauwen L, Molijn A, Sastrowijoto S, ter Schegget J, et al. Development and clinical evaluation of a highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. J Clin Microbiol. 1999;37(8):2508–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Phillips S, Cornall AM, Machalek DA, Garland SM, Bateson D, Garefalakis M, et al. Comparison of the Roche Cobas(R) 4800 HPV assay to Roche Amplicor for detection of high-risk human papillomavirus. Eur J Clin Microbiol Infect Dis. 2016;35(8):1305–7.

    Article  CAS  PubMed  Google Scholar 

  92. Barbieri D, Nocera M, Gallinella G, Gentilomi GA, Plazzi M, Costa S, et al. Comparison of HPV sign genotyping test with INNO-LiPA HPV genotyping extra assay on histologic and cytologic cervical specimens. Diagn Microbiol Infect Dis. 2012;74(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  93. Feng Q, Cherne S, Winer RL, Balasubramanian A, Lee SK, Hawes SE, et al. Development and evaluation of a liquid bead microarray assay for genotyping genital human papillomaviruses. J Clin Microbiol. 2009;47(3):547–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ge Y, Christensen P, Luna E, Armylagos D, Schwartz MR, Mody DR. Performance of Aptima and Cobas HPV testing platforms in detecting high-grade cervical dysplasia and cancer. Cancer Cytopathol. 2017;125(8):652–7.

    Article  CAS  PubMed  Google Scholar 

  95. Szarewski A, Mesher D, Cadman L, Austin J, Ashdown-Barr L, Ho L, et al. Comparison of seven tests for high-grade cervical intraepithelial neoplasia in women with abnormal smears: the predictors 2 study. J Clin Microbiol. 2012;50(6):1867–73.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Castle PE, Eaton B, Reid J, Getman D, Dockter J. Comparison of human papillomavirus detection by Aptima HPV and cobas HPV tests in a population of women referred for colposcopy following detection of atypical squamous cells of undetermined significance by pap cytology. J Clin Microbiol. 2015;53(4):1277–81.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Iftner T, Becker S, Neis KJ, Castanon A, Iftner A, Holz B, et al. Head-to-head comparison of the RNA-based Aptima human papillomavirus (HPV) assay and the DNA-based hybrid capture 2 HPV test in a routine screening population of women aged 30 to 60 years in Germany. J Clin Microbiol. 2015;53(8):2509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nolte FS, Ribeiro-Nesbitt DG. Comparison of the Aptima and Cervista tests for detection of high-risk human papillomavirus in cervical cytology specimens. Am J Clin Pathol. 2014;142(4):561–6.

    Article  PubMed  Google Scholar 

  99. Muangto T, Chanthasenanont A, Lertvutivivat S, Nanthakomon T, Pongrojpaw D, Bhamarapravatana K, et al. Experience of combined liquid based cervical cytology and high-risk HPV mRNA for cervical cancer screening in Thammasat University Hospital. Asian Pac J Cancer Prev. 2016;17(9):4409–13.

    PubMed  Google Scholar 

  100. Virtanen E, Kalliala I, Dyba T, Nieminen P, Auvinen E. Performance of mRNA- and DNA-based high-risk human papillomavirus assays in detection of high-grade cervical lesions. Acta Obstet Gynecol Scand. 2017;96(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  101. Poljak M, Kocjan BJ, Ostrbenk A, Seme K. Commercially available molecular tests for human papillomaviruses (HPV): 2015 update. J Clin Virol. 2016;76 Suppl 1:S3–S13.

    Article  PubMed  CAS  Google Scholar 

  102. Kadish AS, Hagan RJ, Ritter DB, Goldberg GL, Romney SL, Kanetsky PA, et al. Biologic characteristics of specific human papillomavirus types predicted from morphology of cervical lesions. Hum Pathol. 1992;23(11):1262–9.

    Article  CAS  PubMed  Google Scholar 

  103. Lorincz AT, Reid R, Jenson AB, Greenberg MD, Lancaster W, Kurman RJ. Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol. 1992;79(3):328–37.

    Article  CAS  PubMed  Google Scholar 

  104. Bergeron C, Barrasso R, Beaudenon S, Flamant P, Croissant O, Orth G. Human papillomaviruses associated with cervical intraepithelial neoplasia. Great diversity and distinct distribution in low- and high-grade lesions. Am J Surg Pathol. 1992;16(7):641–9.

    Article  CAS  PubMed  Google Scholar 

  105. Campion MJ, McCance DJ, Cuzick J, Singer A. Progressive potential of mild cervical atypia: prospective cytological, colposcopic, and virological study. Lancet. 1986;2(8501):237–40.

    Article  CAS  PubMed  Google Scholar 

  106. Kataja V, Syrjanen K, Syrjanen S, Mantyjarvi R, Yliskoski M, Saarikoski S, et al. Prospective follow-up of genital HPV infections: survival analysis of the HPV typing data. Eur J Epidemiol. 1990;6(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  107. Mirabello L, Schiffman M, Ghosh A, Rodriguez AC, Vasiljevic N, Wentzensen N, et al. Elevated methylation of HPV16 DNA is associated with the development of high grade cervical intraepithelial neoplasia. Int J Cancer. 2013;132(6):1412–22.

    Article  CAS  PubMed  Google Scholar 

  108. Vasiljevic N, Scibior-Bentkowska D, Brentnall A, Cuzick J, Lorincz A. A comparison of methylation levels in HPV18, HPV31 and HPV33 genomes reveals similar associations with cervical precancers. J Clin Virol. 2014;59(3):161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wentzensen N, Sun C, Ghosh A, Kinney W, Mirabello L, Wacholder S, et al. Methylation of HPV18, HPV31, and HPV45 genomes and cervical intraepithelial neoplasia grade 3. J Natl Cancer Inst. 2012;104(22):1738–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lorincz AT, Brentnall AR, Vasiljevic N, Scibior-Bentkowska D, Castanon A, Fiander A, et al. HPV16 L1 and L2 DNA methylation predicts high-grade cervical intraepithelial neoplasia in women with mildly abnormal cervical cytology. Int J Cancer. 2013;133(3):637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lorincz AT. Cancer diagnostic classifiers based on quantitative DNA methylation. Expert Rev Mol Diagn. 2014;14(3):293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hesselink AT, Heideman DA, Steenbergen RD, Gok M, van Kemenade FJ, Wilting SM, et al. Methylation marker analysis of self-sampled cervico-vaginal lavage specimens to triage high-risk HPV-positive women for colposcopy. Int J Cancer. 2014;135(4):880–6.

    Article  CAS  PubMed  Google Scholar 

  113. Verhoef VM, Heideman DA, van Kemenade FJ, Rozendaal L, Bosgraaf RP, Hesselink AT, et al. Methylation marker analysis and HPV16/18 genotyping in high-risk HPV positive self-sampled specimens to identify women with high grade CIN or cervical cancer. Gynecol Oncol. 2014;135(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  114. Kalantari M, Osann K, Calleja-Macias IE, Kim S, Yan B, Jordan S, et al. Methylation of human papillomavirus 16, 18, 31, and 45 L2 and L1 genes and the cellular DAPK gene: considerations for use as biomarkers of the progression of cervical neoplasia. Virology. 2014;448:314–21.

    Article  CAS  PubMed  Google Scholar 

  115. Lorincz AT, Brentnall AR, Scibior-Bentkowska D, Reuter C, Banwait R, Cadman L, et al. Validation of a DNA methylation HPV triage classifier in a screening sample. Int J Cancer. 2016;138(11):2745–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hansel A, Steinbach D, Greinke C, Schmitz M, Eiselt J, Scheungraber C, et al. A promising DNA methylation signature for the triage of high-risk human papillomavirus DNA-positive women. PLoS One. 2014;9(3):e91905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Vasiljevic N, Scibior-Bentkowska D, Brentnall AR, Cuzick J, Lorincz AT. Credentialing of DNA methylation assays for human genes as diagnostic biomarkers of cervical intraepithelial neoplasia in high-risk HPV positive women. Gynecol Oncol. 2014;132(3):709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hesselink AT, Heideman DA, Steenbergen RD, Coupe VM, Overmeer RM, Rijkaart D, et al. Combined promoter methylation analysis of CADM1 and MAL: an objective triage tool for high-risk human papillomavirus DNA-positive women. Clin Cancer Res. 2011;17(8):2459–65.

    Article  CAS  PubMed  Google Scholar 

  119. Verhoef VM, Bosgraaf RP, van Kemenade FJ, Rozendaal L, Heideman DA, Hesselink AT, et al. Triage by methylation-marker testing versus cytology in women who test HPV-positive on self-collected cervicovaginal specimens (PROHTECT-3): a randomised controlled non-inferiority trial. Lancet Oncol. 2014;15(3):315–22.

    Article  CAS  PubMed  Google Scholar 

  120. Eijsink JJ, Lendvai A, Deregowski V, Klip HG, Verpooten G, Dehaspe L, et al. A four-gene methylation marker panel as triage test in high-risk human papillomavirus positive patients. Int J Cancer. 2012;130(8):1861–9.

    Article  CAS  PubMed  Google Scholar 

  121. Lai HC, Ou YC, Chen TC, Huang HJ, Cheng YM, Chen CH, et al. PAX1/SOX1 DNA methylation and cervical neoplasia detection: a Taiwanese Gynecologic Oncology Group (TGOG) study. Cancer Med. 2014;3(4):1062–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wilhelm T. Phenotype prediction based on genome-wide DNA methylation data. BMC Bioinformatics. 2014;15:193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Su PH, Hsu YW, Huang RL, Weng YC, Wang HC, Chen YC, et al. Methylomics of nitroxidative stress on precancerous cells reveals DNA methylation alteration at the transition from in situ to invasive cervical cancer. Oncotarget. 2017;8(39):65281–91.

    Article  PubMed  PubMed Central  Google Scholar 

  124. De Vuyst H, Franceschi S, Plummer M, Mugo NR, Sakr SR, Meijer CJ, et al. Methylation levels of CADM1, MAL, and MIR124-2 in cervical scrapes for triage of HIV-infected, high-risk HPV-positive women in Kenya. J Acquir Immune Defic Syndr. 2015;70(3):311–8.

    Article  PubMed  CAS  Google Scholar 

  125. De Strooper LM, Hesselink AT, Berkhof J, Meijer CJ, Snijders PJ, Steenbergen RD, et al. Combined CADM1/MAL methylation and cytology testing for colposcopy triage of high-risk HPV-positive women. Cancer Epidemiol Biomark Prev. 2014;23(9):1933–7.

    Article  CAS  Google Scholar 

  126. Chen J, Yao D, Li Y, Chen H, He C, Ding N, et al. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Int J Mol Med. 2013;32(3):557–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY, et al. Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res. 2008;14(9):2535–42.

    Article  CAS  PubMed  Google Scholar 

  128. Gocze K, Gombos K, Juhasz K, Kovacs K, Kajtar B, Benczik M, et al. Unique microRNA expression profiles in cervical cancer. Anticancer Res. 2013;33(6):2561–7.

    CAS  PubMed  Google Scholar 

  129. Wilting SM, Snijders PJ, Verlaat W, Jaspers A, van de Wiel MA, van Wieringen WN, et al. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene. 2013;32(1):106–16.

    Article  CAS  PubMed  Google Scholar 

  130. Nagamitsu Y, Nishi H, Sasaki T, Takaesu Y, Terauchi F, Isaka K. Profiling analysis of circulating microRNA expression in cervical cancer. Mol Clin Oncol. 2016;5(1):189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sharma S, Hussain S, Soni K, Singhal P, Tripathi R, Ramachandran VG, et al. Novel MicroRNA signatures in HPV-mediated cervical carcinogenesis in Indian women. Tumour Biol. 2016;37(4):4585–95.

    Article  CAS  PubMed  Google Scholar 

  132. Jia W, Wu Y, Zhang Q, Gao GE, Zhang C, Xiang Y. Expression profile of circulating microRNAs as a promising fingerprint for cervical cancer diagnosis and monitoring. Mol Clin Oncol. 2015;3(4):851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li MY, Hu XX. Meta-analysis of microRNA expression profiling studies in human cervical cancer. Med Oncol. 2015;32(6):510.

    PubMed  Google Scholar 

  134. Deftereos G, Corrie SR, Feng Q, Morihara J, Stern J, Hawes SE, et al. Expression of mir-21 and mir-143 in cervical specimens ranging from histologically normal through to invasive cervical cancer. PLoS One. 2011;6(12):e28423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dasari S, Wudayagiri R, Valluru L. Cervical cancer: biomarkers for diagnosis and treatment. Clin Chim Acta. 2015;445:7–11.

    Article  CAS  PubMed  Google Scholar 

  136. Yang P, Chen N, Yang D, Crane J, Yang S, Wang H, et al. The ratio of serum Angiopoietin-1 to Angiopoietin-2 in patients with cervical cancer is a valuable diagnostic and prognostic biomarker. PeerJ. 2017;5:e3387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Beyer S, Zhu J, Mayr D, Kuhn C, Schulze S, Hofmann S, et al. Histone H3 acetyl K9 and histone H3 tri methyl K4 as prognostic markers for patients with cervical cancer. Int J Mol Sci. 2017;18(3) https://doi.org/10.3390/ijms18030477.

    Article  PubMed Central  CAS  Google Scholar 

  138. Yang K, Xia B, Wang W, Cheng J, Yin M, Xie H, et al. A comprehensive analysis of metabolomics and transcriptomics in cervical cancer. Sci Rep. 2017;7:43353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Institute NC. Surveillance, epidemiology, and end results program Bethesda, MD 2017 [cited 2017 7/24/2017]. Available from: https://seer.cancer.gov/statfacts/html/cervix.html.

  140. Fahey MT, Irwig L, Macaskill P. Meta-analysis of pap test accuracy. Am J Epidemiol. 1995;141(7):680–9.

    Article  CAS  PubMed  Google Scholar 

  141. Cuzick J, Szarewski A, Terry G, Ho L, Hanby A, Maddox P, et al. Human papillomavirus testing in primary cervical screening. Lancet. 1995;345(8964):1533–6.

    Article  CAS  PubMed  Google Scholar 

  142. Sedlacek TV. Cost-effectiveness of methods to enhance sensitivity of Papanicolaou testing. JAMA. 1999;282:1419–20.

    Article  CAS  PubMed  Google Scholar 

  143. Joste NE, Rushing L, Granados R, Zitz JC, Genest DR, Crum CP, et al. Bethesda classification of cervicovaginal smears: reproducibility and viral correlates. Hum Pathol. 1996;27(6):581–5.

    Article  CAS  PubMed  Google Scholar 

  144. Ismail SM, Colclough AB, Dinnen JS, Eakins D, Evans DM, Gradwell E, et al. Observer variation in histopathological diagnosis and grading of cervical intraepithelial neoplasia. BMJ. 1989;298(6675):707–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dalla Palma P, Giorgi Rossi P, Collina G, Buccoliero AM, Ghiringhello B, Gilioli E, et al. The reproducibility of CIN diagnoses among different pathologists: data from histology reviews from a multicenter randomized study. Am J Clin Pathol. 2009;132(1):125–32.

    Article  PubMed  Google Scholar 

  146. Miller AB. An epidemiological perspective on cancer screening. Clin Biochem. 1995;28(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  147. NIH releases consensus statement on cervical cancer. Am Fam Physician. 1996;54(7):2310, 2315–6.

    Google Scholar 

  148. Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. Am J Clin Pathol. 2012;137(4):516–42.

    Article  PubMed  Google Scholar 

  149. Kulasingam SL, Kim JJ, Lawrence WF, Mandelblatt JS, Myers ER, Schiffman M, et al. Cost-effectiveness analysis based on the atypical squamous cells of undetermined significance/low-grade squamous intraepithelial lesion triage study (ALTS). J Natl Cancer Inst. 2006;98(2):92–100.

    Article  PubMed  Google Scholar 

  150. Arbyn M, Sasieni P, Meijer CJ, Clavel C, Koliopoulos G, Dillner J. Chapter 9: clinical applications of HPV testing: a summary of meta-analyses. Vaccine. 2006;24(Suppl 3):S3/78–89.

    Google Scholar 

  151. Arbyn M, Roelens J, Simoens C, Buntinx F, Paraskevaidis E, Martin-Hirsch PP, et al. Human papillomavirus testing versus repeat cytology for triage of minor cytological cervical lesions. Cochrane Database Syst Rev. 2013;(3):Cd008054. https://doi.org/10.1002/14651858.CD008054.pub2.

  152. Carozzi FM, Confortini M, Cecchini S, Bisanzi S, Cariaggi MP, Pontenani G, et al. Triage with human papillomavirus testing of women with cytologic abnormalities prompting referral for colposcopy assessment. Cancer. 2005;105(1):2–7.

    Article  PubMed  Google Scholar 

  153. Arbyn M, Roelens J, Cuschieri K, Cuzick J, Szarewski A, Ratnam S, et al. The APTIMA HPV assay versus the hybrid capture 2 test in triage of women with ASC-US or LSIL cervical cytology: a meta-analysis of the diagnostic accuracy. Int J Cancer. 2013;132(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  154. Aministration USFaD. FDA approves first human papillomavirus test for primary cervical cancer screening Silver Spring, MD2014 [cited 2017 7/24/2017]. Available from: https://wayback.archive-it.org/7993/20170112222903/http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm394773.htm.

  155. Bulkmans NW, Berkhof J, Rozendaal L, van Kemenade FJ, Boeke AJ, Bulk S, et al. Human papillomavirus DNA testing for the detection of cervical intraepithelial neoplasia grade 3 and cancer: 5-year follow-up of a randomised controlled implementation trial. Lancet. 2007;370(9601):1764–72.

    Article  CAS  PubMed  Google Scholar 

  156. Mayrand MH, Duarte-Franco E, Rodrigues I, Walter SD, Hanley J, Ferenczy A, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. N Engl J Med. 2007;357(16):1579–88.

    Article  CAS  PubMed  Google Scholar 

  157. Naucler P, Ryd W, Tornberg S, Strand A, Wadell G, Elfgren K, et al. Human papillomavirus and Papanicolaou tests to screen for cervical cancer. N Engl J Med. 2007;357(16):1589–97.

    Article  CAS  PubMed  Google Scholar 

  158. Ronco G, Giorgi-Rossi P, Carozzi F, Dalla Palma P, Del Mistro A, De Marco L, et al. Human papillomavirus testing and liquid-based cytology in primary screening of women younger than 35 years: results at recruitment for a randomised controlled trial. Lancet Oncol. 2006;7(7):547–55.

    Article  PubMed  Google Scholar 

  159. Kulasingam SL, Hughes JP, Kiviat NB, Mao C, Weiss NS, Kuypers JM, et al. Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral. JAMA. 2002;288(14):1749–57.

    Article  PubMed  Google Scholar 

  160. Arbyn M, Ronco G, Anttila A, Meijer CJ, Poljak M, Ogilvie G, et al. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine. 2012;30(Suppl 5):F88–99.

    Article  PubMed  Google Scholar 

  161. Meijer CJ, Berkhof H, Heideman DA, Hesselink AT, Snijders PJ. Validation of high-risk HPV tests for primary cervical screening. J Clin Virol. 2009;46(Suppl 3):S1–4.

    Article  PubMed  Google Scholar 

  162. Ronco G, Dillner J, Elfstrom KM, Tunesi S, Snijders PJ, Arbyn M, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524–32.

    Article  PubMed  Google Scholar 

  163. Carozzi F, Visioli CB, Confortini M, Iossa A, Mantellini P, Burroni E, et al. hr-HPV testing in the follow-up of women with cytological abnormalities and negative colposcopy. Br J Cancer. 2013;109(7):1766–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dillner J, Rebolj M, Birembaut P, Petry KU, Szarewski A, Munk C, et al. Long term predictive values of cytology and human papillomavirus testing in cervical cancer screening: joint European cohort study. BMJ. 2008;337:a1754.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Liaw KL, Hildesheim A, Burk RD, Gravitt P, Wacholder S, Manos MM, et al. A prospective study of human papillomavirus (HPV) type 16 DNA detection by polymerase chain reaction and its association with acquisition and persistence of other HPV types. J Infect Dis. 2001;183(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  166. Liaw KL, Glass AG, Manos MM, Greer CE, Scott DR, Sherman M, et al. Detection of human papillomavirus DNA in cytologically normal women and subsequent cervical squamous intraepithelial lesions. J Natl Cancer Inst. 1999;91(11):954–60.

    Article  CAS  PubMed  Google Scholar 

  167. Rodriguez AC, Schiffman M, Herrero R, Hildesheim A, Bratti C, Sherman ME, et al. Longitudinal study of human papillomavirus persistence and cervical intraepithelial neoplasia grade 2/3: critical role of duration of infection. J Natl Cancer Inst. 2010;102(5):315–24.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Nobbenhuis MA, Walboomers JM, Helmerhorst TJ, Rozendaal L, Remmink AJ, Risse EK, et al. Relation of human papillomavirus status to cervical lesions and consequences for cervical-cancer screening: a prospective study. Lancet. 1999;354(9172):20–5.

    Article  CAS  PubMed  Google Scholar 

  169. Kjaer SK, Frederiksen K, Munk C, Iftner T. Long-term absolute risk of cervical intraepithelial neoplasia grade 3 or worse following human papillomavirus infection: role of persistence. J Natl Cancer Inst. 2010;102(19):1478–88.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Koutsky LA, Holmes KK, Critchlow CW, Stevens CE, Paavonen J, Beckmann AM, et al. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Engl J Med. 1992;327(18):1272–8.

    Article  CAS  PubMed  Google Scholar 

  171. Trottier H, Mahmud SM, Lindsay L, Jenkins D, Quint W, Wieting SL, et al. Persistence of an incident human papillomavirus infection and timing of cervical lesions in previously unexposed young women. Cancer Epidemiol Biomark Prev. 2009;18(3):854–62.

    Article  CAS  Google Scholar 

  172. Schlecht NF, Kulaga S, Robitaille J, Ferreira S, Santos M, Miyamura RA, et al. Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA. 2001;286(24):3106–14.

    Article  CAS  PubMed  Google Scholar 

  173. Jaisamrarn U, Castellsague X, Garland SM, Naud P, Palmroth J, Del Rosario-Raymundo MR, et al. Natural history of progression of HPV infection to cervical lesion or clearance: analysis of the control arm of the large, randomised PATRICIA study. PLoS One. 2013;8(11):e79260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Kotaniemi-Talonen L, Nieminen P, Anttila A, Hakama M. Routine cervical screening with primary HPV testing and cytology triage protocol in a randomised setting. Br J Cancer. 2005;93(8):862–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Leinonen M, Nieminen P, Kotaniemi-Talonen L, Malila N, Tarkkanen J, Laurila P, et al. Age-specific evaluation of primary human papillomavirus screening vs conventional cytology in a randomized setting. J Natl Cancer Inst. 2009;101(23):1612–23.

    Article  CAS  PubMed  Google Scholar 

  176. Anttila A, Kotaniemi-Talonen L, Leinonen M, Hakama M, Laurila P, Tarkkanen J, et al. Rate of cervical cancer, severe intraepithelial neoplasia, and adenocarcinoma in situ in primary HPV DNA screening with cytology triage: randomised study within organised screening programme. BMJ. 2010;340:c1804.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Froudarakis ME. Diagnostic work-up of pleural effusions. Respiration. 2008;75(1):4–13.

    Article  PubMed  Google Scholar 

  178. Keettel WC, Elkins HG. Experience with radioactive colloidal gold in the treatment of ovarian carcinoma. Am J Obstet Gynecol. 1956;71(3):553–68.

    Article  CAS  PubMed  Google Scholar 

  179. Creasman WT, Rutledge F. The prognostic value of peritoneal cytology in gynecologic malignant disease. Am J Obstet Gynecol. 1971;110(6):773–81.

    Article  CAS  PubMed  Google Scholar 

  180. Day TG Jr, Smith JP. Diagnosis and staging of ovarian carcinoma. Semin Oncol. 1975;2(3):217–22.

    PubMed  Google Scholar 

  181. Davidson W, Madan R, O’Neil M, Tawfik OW, Fan F. Utility of peritoneal washing cytology in staging and prognosis of ovarian and fallopian tube neoplasms: a 10-year retrospective analysis. Ann Diagn Pathol. 2016;22:54–7.

    Article  PubMed  Google Scholar 

  182. Fadare O, Mariappan MR, Hileeto D, Wang S, McAlpine JN, Rimm DL. Upstaging based solely on positive peritoneal washing does not affect outcome in endometrial cancer. Mod Pathol. 2005;18(5):673–80.

    Article  PubMed  Google Scholar 

  183. Fadare O, Mariappan MR, Wang S, Hileeto D, McAlpine J, Rimm DL. The histologic subtype of ovarian tumors affects the detection rate by pelvic washings. Cancer. 2004;102(3):150–6.

    Article  PubMed  Google Scholar 

  184. Milosevic MF, Dembo AJ, Thomas GM. The clinical significance of malignant peritoneal cytology in stage I endometrial carcinoma. Int J Gynecol Cancer. 1992;2(5):225–35.

    Article  PubMed  Google Scholar 

  185. Tebeu PM, Popowski Y, Verkooijen HM, Bouchardy C, Ludicke F, Usel M, et al. Positive peritoneal cytology in early-stage endometrial cancer does not influence prognosis. Br J Cancer. 2004;91(4):720–4.

    Article  PubMed  PubMed Central  Google Scholar 

  186. American Joint Committee on Cancer. AJCC cancer staging manual. 7th ed. Philadelphia, PA: Lippincott Raven Publishers; 2010.

    Book  Google Scholar 

  187. Hanley KZ, Fadare O, Fisher KE, Atkins KA, Mosunjac MB. Clinical significance of positive pelvic washings in uterine papillary serous carcinoma confined to an endometrial polyp. Int J Gynecol Pathol. 2016;35(3):249–55.

    Article  PubMed  Google Scholar 

  188. Snyder MJ, Bentley R, Robboy SJ. Transtubal spread of serous adenocarcinoma of the endometrium: an underrecognized mechanism of metastasis. Int J Gynecol Pathol. 2006;25(2):155–60.

    Article  PubMed  Google Scholar 

  189. Stewart CJ, Doherty DA, Havlat M, Koay MH, Leung YC, Naran A, et al. Transtubal spread of endometrial carcinoma: correlation of intra-luminal tumour cells with tumour grade, peritoneal fluid cytology, and extra-uterine metastasis. Pathology. 2013;45(4):382–7.

    Article  CAS  PubMed  Google Scholar 

  190. Zaino RJ. FIGO staging of endometrial adenocarcinoma: a critical review and proposal. Int J Gynecol Pathol. 2009;28(1):1–9.

    Article  PubMed  Google Scholar 

  191. Delair D, Soslow RA, Gardner GJ, Barakat RR, Leitao MM Jr. Tumoral displacement into fallopian tubes in patients undergoing robotically assisted hysterectomy for newly diagnosed endometrial cancer. Int J Gynecol Pathol. 2013;32(2):188–92.

    Article  PubMed  Google Scholar 

  192. Hu S, Sun Y, Brown A. Incidence of positive peritoneal washings obtained during hysterectomy for endometrial adenocarcinoma: a comparison of robotic-assisted hysterectomy versus total abdominal hysterectomy. Lab Investig. 2010;90(247A): 23–24.

    Google Scholar 

  193. Krizova A, Clarke BA, Bernardini MQ, James S, Kalloger SE, Boerner SL, et al. Histologic artifacts in abdominal, vaginal, laparoscopic, and robotic hysterectomy specimens: a blinded, retrospective review. Am J Surg Pathol. 2011;35(1):115–26.

    Article  PubMed  Google Scholar 

  194. Shield P. Peritoneal washing cytology. Cytopathology. 2004;15(3):131–41.

    Article  CAS  PubMed  Google Scholar 

  195. Rodriguez EF, Monaco SE, Khalbuss W, Austin RM, Pantanowitz L. Abdominopelvic washings: a comprehensive review. Cytojournal. 2013;10:7.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Wojcik EM, Naylor B. “Collagen balls” in peritoneal washings. Prevalence, morphology, origin and significance. Acta Cytol. 1992;36(4):466–70.

    CAS  PubMed  Google Scholar 

  197. RM D. The art and science of cytopathology. Exfoliative cytology. 2nd ed. Chicago, IL: ASCP Press; 2012. p. 269–338.

    Google Scholar 

  198. McGowan L. Peritoneal fluid washings. Acta Cytol. 1989;33(3):414–5.

    CAS  PubMed  Google Scholar 

  199. Attanoos RL, Webb R, Dojcinov SD, Gibbs AR. Value of mesothelial and epithelial antibodies in distinguishing diffuse peritoneal mesothelioma in females from serous papillary carcinoma of the ovary and peritoneum. Histopathology. 2002;40(3):237–44.

    Article  CAS  PubMed  Google Scholar 

  200. Ali SZ, Cibas ES. In: Rosenthal D, editor. Serous cavity fluids and cerebrospinal fluid cytolopathology. New York: Springer; 2012.

    Chapter  Google Scholar 

  201. Zuna RE, Rao RN, Shidham VB. Diagnostic cytopathology of peritoneal washing, mesothelioma, metastatic carcinoma in effusions. In: Shidham VB, Atkinson BF, editors. Cytopathologic diagnosis of serous fluids. Philadelphia: Saunders Elsevier; 2007. p. 91–115.

    Google Scholar 

  202. Tyagi R, Gupta N, Bhagat P, Gainder S, Rai B, Dhaliwal LK, et al. Impact of SurePath((R)) liquid-based preparation in cytological analysis of peritoneal washing in practice of gynecologic oncology. J Cytol. 2017;34(2):95–100.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Moriarty AT, Schwartz MR, Ducatman BS, Booth CN, Haja J, Chakraborty S, et al. A liquid concept--do classic preparations of body cavity fluid perform differently than ThinPrep cases? Observations from the College of American Pathologists Interlaboratory Comparison Program in Nongynecologic Cytology. Arch Pathol Lab Med. 2008;132(11):1716–8.

    PubMed  Google Scholar 

  204. Selvaggi SM. Diagnostic pitfalls of peritoneal washing cytology and the role of cell blocks in their diagnosis. Diagn Cytopathol. 2003;28(6):335–41.

    Article  PubMed  Google Scholar 

  205. Balassanian R, Wool GD, Ono JC, Olejnik-Nave J, Mah MM, Sweeney BJ, et al. A superior method for cell block preparation for fine-needle aspiration biopsies. Cancer Cytopathol. 2016;124(7):508–18.

    Article  CAS  PubMed  Google Scholar 

  206. Shidham VB. The panorama of different faces of mesothelial cells. In: Atkinson BF, Shidham VB, editors. Cytopathologic diagnosis of serous fluids. 1st ed. Philadelphia: Saunders Elsevier; 2007. p. 19–31.

    Google Scholar 

  207. Pisharodi LR, Bedrossian CW. Cytopathology of serous neoplasia of the ovary and the peritoneum: differential diagnosis from mesothelial proliferations. Diagn Cytopathol. 1996;15(4):292–5.

    Article  CAS  PubMed  Google Scholar 

  208. Assaly M, Bongiovanni M, Kumar N, Egger JF, Pelte MF, Genevay M, et al. Cytology of benign multicystic peritoneal mesothelioma in peritoneal washings. Cytopathology. 2008;19(4):224–8.

    Article  CAS  PubMed  Google Scholar 

  209. Malpica A, Sant’Ambrogio S, Deavers MT, Silva EG. Well-differentiated papillary mesothelioma of the female peritoneum: a clinicopathologic study of 26 cases. Am J Surg Pathol. 2012;36(1):117–27.

    Article  PubMed  Google Scholar 

  210. Haba T, Wakasa K, Sasaki M. Well-differentiated papillary mesothelioma in the pelvic cavity. A case report. Acta Cytol. 2003;47(1):88–92.

    Article  PubMed  Google Scholar 

  211. Zuna RE, Mitchell ML. Cytologic findings in peritoneal washings associated with benign gynecologic disease. Acta Cytol. 1988;32(2):139–47.

    CAS  PubMed  Google Scholar 

  212. Pantanowitz L, Otis CN, Goulart RA. Cytologic findings of psammocarcinoma in peritoneal washings. Acta Cytol. 2009;53(3):263–7.

    Article  PubMed  Google Scholar 

  213. Zuna RE, Mitchell ML, Mulick KA, Weijchert WM. Cytohistologic correlation of peritoneal washing cytology in gynecologic disease. Acta Cytol. 1989;33(3):327–36.

    CAS  PubMed  Google Scholar 

  214. Zuna RE, Behrens A. Peritoneal washing cytology in gynecologic cancers: long-term follow-up of 355 patients. J Natl Cancer Inst. 1996;88(14):980–7.

    Article  CAS  PubMed  Google Scholar 

  215. Tauchi PS, Caraway N, Truong LD, Kaplan AL, Ramzy I. Serous surface carcinoma of the peritoneum: useful role of cytology in differential diagnosis and follow-up. Acta Cytol. 1996;40(3):429–36.

    Article  CAS  PubMed  Google Scholar 

  216. Hart WR. Diagnostic challenge of secondary (metastatic) ovarian tumors simulating primary endometrioid and mucinous neoplasms. Pathol Int. 2005;55(5):231–43.

    Article  PubMed  Google Scholar 

  217. Khunamornpong S, Settakorn J, Sukpan K, Suprasert P, Siriaunkgul S. Mucinous tumor of low malignant potential (“borderline” or “atypical proliferative” tumor) of the ovary: a study of 171 cases with the assessment of intraepithelial carcinoma and microinvasion. Int J Gynecol Pathol. 2011;30(3):218–30.

    Article  PubMed  Google Scholar 

  218. Pisharodi LR, Bedrossian CW. Cytologic diagnosis of pseudomyxoma peritonei: common and uncommon causes. Diagn Cytopathol. 1996;14(1):10–3.

    Article  CAS  PubMed  Google Scholar 

  219. Badyal RK, Khairwa A, Rajwanshi A, Nijhawan R, Radhika S, Gupta N, et al. Significance of epithelial cell clusters in pseudomyxoma peritonei. Cytopathology. 2016;27(6):418–26.

    Article  CAS  PubMed  Google Scholar 

  220. Ronnett BM, Kurman RJ, Zahn CM, Shmookler BM, Jablonski KA, Kass ME, et al. Pseudomyxoma peritonei in women: a clinicopathologic analysis of 30 cases with emphasis on site of origin, prognosis, and relationship to ovarian mucinous tumors of low malignant potential. Hum Pathol. 1995;26(5):509–24.

    Article  CAS  PubMed  Google Scholar 

  221. Ronnett BM, Shmookler BM, Sugarbaker PH, Kurman RJ. Pseudomyxoma peritonei: new concepts in diagnosis, origin, nomenclature, and relationship to mucinous borderline (low malignant potential) tumors of the ovary. Anat Pathol. 1997;2:197–226.

    CAS  PubMed  Google Scholar 

  222. Gupta R, Mathur SR, Arora VK, Sharma SG. Cytologic features of extragonadal germ cell tumors: a study of 88 cases with aspiration cytology. Cancer. 2008;114(6):504–11.

    Article  PubMed  Google Scholar 

  223. Park JY, Kim DY, Suh DS, Kim JH, Kim YM, Kim YT, et al. Outcomes of surgery alone and surveillance strategy in young women with stage I malignant ovarian germ cell tumors. Int J Gynecol Cancer. 2016;26(5):859–64.

    Article  PubMed  Google Scholar 

  224. Lurain JR, Rice BL, Rademaker AW, Poggensee LE, Schink JC, Miller DS. Prognostic factors associated with recurrence in clinical stage I adenocarcinoma of the endometrium. Obstet Gynecol. 1991;78(1):63–9.

    CAS  PubMed  Google Scholar 

  225. Zaino RJ, Kurman RJ, Diana KL, Morrow CP. Pathologic models to predict outcome for women with endometrial adenocarcinoma: the importance of the distinction between surgical stage and clinical stage – a gynecologic oncology group study. Cancer. 1996;77(6):1115–21.

    Article  CAS  PubMed  Google Scholar 

  226. Kanbour AI, Buchsbaum HJ, Hall A, Kanbour AI. Peritoneal cytology in malignant mixed mullerian tumors of the uterus. Gynecol Oncol. 1989;33(1):91–5.

    Article  CAS  PubMed  Google Scholar 

  227. Wheeler YY, Burroughs F, Li QK. Fine-needle aspiration of a well-differentiated papillary mesothelioma in the inguinal hernia sac: a case report and review of literature. Diagn Cytopathol. 2009;37(10):748–54.

    Article  PubMed  Google Scholar 

  228. Kalyani R, Das S. Adenomatatoid tumor: cytological diagnosis of two cases. J Cytol. 2009;26(1):30–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Makkar M, Dayal P, Gupta C, Mahajan N. Adenomatoid tumor of testis: a rare cytological diagnosis. J Cytol. 2013;30(1):65–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Husain AN, Colby TV, Ordonez NG, Allen TC, Attanoos RL, Beasley MB, et al. Guidelines for pathologic diagnosis of malignant mesothelioma: 2017 update of the consensus statement from the international mesothelioma interest group. Arch Pathol Lab Med. 2018;142(1):89–108.

    Article  CAS  PubMed  Google Scholar 

  231. Patel NP, Taylor CA, Levine EA, Trupiano JK, Geisinger KR. Cytomorphologic features of primary peritoneal mesothelioma in effusion, washing, and fine-needle aspiration biopsy specimens: examination of 49 cases at one institution, including post-intraperitoneal hyperthermic chemotherapy findings. Am J Clin Pathol. 2007;128(3):414–22.

    Article  PubMed  Google Scholar 

  232. Suster S, Moran CA. Applications and limitations of immunohistochemistry in the diagnosis of malignant mesothelioma. Adv Anat Pathol. 2006;13(6):316–29.

    Article  CAS  PubMed  Google Scholar 

  233. Tiwana KK, Nibhoria S, Kaur M, Monga T, Gupta R. Postchemotherapy histopathological evaluation of ovarian carcinoma: a 40-case study. Chemother Res Pract. 2015;2015:197871.

    PubMed  PubMed Central  Google Scholar 

  234. McCluggage WG, Lyness RW, Atkinson RJ, Dobbs SP, Harley I, McClelland HR, et al. Morphological effects of chemotherapy on ovarian carcinoma. J Clin Pathol. 2002;55(1):27–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Wang Y, Wang Y, Zheng W. Cytologic changes of ovarian epithelial cancer induced by neoadjuvant chemotherapy. Int J Clin Exp Pathol. 2013;6(10):2121–8.

    PubMed  PubMed Central  Google Scholar 

  236. Attanoos RL, Dojcinov SD, Webb R, Gibbs AR. Anti-mesothelial markers in sarcomatoid mesothelioma and other spindle cell neoplasms. Histopathology. 2000;37(3):224–31.

    Article  CAS  PubMed  Google Scholar 

  237. Attanoos RL, Webb R, Dojcinov SD, Gibbs AR. Malignant epithelioid mesothelioma: anti-mesothelial marker expression correlates with histological pattern. Histopathology. 2001;39(6):584–8.

    Article  CAS  PubMed  Google Scholar 

  238. Chu AY, Litzky LA, Pasha TL, Acs G, Zhang PJ. Utility of D2-40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod Pathol. 2005;18(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  239. Comin CE, Saieva C, Messerini L. h-caldesmon, calretinin, estrogen receptor, and Ber-EP4: a useful combination of immunohistochemical markers for differentiating epithelioid peritoneal mesothelioma from serous papillary carcinoma of the ovary. Am J Surg Pathol. 2007;31(8):1139–48.

    Article  PubMed  Google Scholar 

  240. Hecht JL, Lee BH, Pinkus JL, Pinkus GS. The value of Wilms tumor susceptibility gene 1 in cytologic preparations as a marker for malignant mesothelioma. Cancer. 2002;96(2):105–9.

    Article  PubMed  Google Scholar 

  241. Lal A, Bourtsos EP, Nayar R, DeFrias DV. Cytologic features of granulosa cell tumors in fluids and fine needle aspiration specimens. Acta Cytol. 2004;48(3):315–20.

    Article  PubMed  Google Scholar 

  242. McCluggage WG. Immunohistochemistry in the distinction between primary and metastatic ovarian mucinous neoplasms. J Clin Pathol. 2012;65(7):596–600.

    Article  PubMed  Google Scholar 

  243. Mhawech-Fauceglia P, Wang D, Menesses T, Chandavarkar U, Ough F, Lin Y, et al. Pax-8 is a reliable marker in making the diagnosis in advanced stage epithelial ovarian carcinoma and primary peritoneal carcinoma for neoadjuvant chemotherapy on cell block and biopsy specimens. Histopathology. 2012;60(6):1019–20.

    Article  PubMed  Google Scholar 

  244. Mittal K, Soslow R, McCluggage WG. Application of immunohistochemistry to gynecologic pathology. Arch Pathol Lab Med. 2008;132(3):402–23.

    PubMed  Google Scholar 

  245. Selvaggi SM, Guidos BJ. Immature teratoma of the ovary on fluid cytology. Diagn Cytopathol. 2001;25(6):411–4.

    Article  CAS  PubMed  Google Scholar 

  246. Sheibani K, Shin SS, Kezirian J, Weiss LM. Ber-EP4 antibody as a discriminant in the differential diagnosis of malignant mesothelioma versus adenocarcinoma. Am J Surg Pathol. 1991;15(8):779–84.

    Article  CAS  PubMed  Google Scholar 

  247. Vang R, Gown AM, Barry TS, Wheeler DT, Ronnett BM. Immunohistochemistry for estrogen and progesterone receptors in the distinction of primary and metastatic mucinous tumors in the ovary: an analysis of 124 cases. Mod Pathol. 2006;19(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  248. Vang R, Gown AM, Barry TS, Wheeler DT, Yemelyanova A, Seidman JD, et al. Cytokeratins 7 and 20 in primary and secondary mucinous tumors of the ovary: analysis of coordinate immunohistochemical expression profiles and staining distribution in 179 cases. Am J Surg Pathol. 2006;30(9):1130–9.

    Article  PubMed  Google Scholar 

  249. Vang R, Gown AM, Wu LS, Barry TS, Wheeler DT, Yemelyanova A, et al. Immunohistochemical expression of CDX2 in primary ovarian mucinous tumors and metastatic mucinous carcinomas involving the ovary: comparison with CK20 and correlation with coordinate expression of CK7. Mod Pathol. 2006;19(11):1421–8.

    Article  CAS  PubMed  Google Scholar 

  250. Vrdoljak-Mozetic D, Stankovic T, Krasevic M, Versa-Ostojic D, Stemberger-Papic S, Rupcic S. Intraoperative cytology of clear cell carcinoma of the ovary. Cytopathology. 2006;17(6):390–5.

    Article  CAS  PubMed  Google Scholar 

  251. Xiang L, Zheng W, Kong B. Detection of PAX8 and p53 is beneficial in recognizing metastatic carcinomas in pelvic washings, especially in cases with suspicious cytology. Gynecol Oncol. 2012;127(3):595–600.

    Article  CAS  PubMed  Google Scholar 

  252. Dabbs DJ. Diagnostic immunohistochemistry theranostic and genomic applications. 3rd ed. Philadelphia: Saunders Elsevier; 2010.

    Google Scholar 

  253. Chapel DB, Husain AN, Krausz T, McGregor SM. PAX8 expression in a subset of malignant peritoneal mesotheliomas and benign mesothelium has diagnostic implications in the differential diagnosis of ovarian serous carcinoma. Am J Surg Pathol. 2017;41(12):1675–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztina Z. Hanley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnamurti, U., Mosunjac, M., Deftereos, G., Hanley, K.Z. (2019). Gynecologic Cytology. In: Zheng, W., Fadare, O., Quick, C., Shen, D., Guo, D. (eds) Gynecologic and Obstetric Pathology, Volume 2. Springer, Singapore. https://doi.org/10.1007/978-981-13-3019-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3019-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3018-6

  • Online ISBN: 978-981-13-3019-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics