Skip to main content

On the Integral Inequalities for Riemann–Liouville and Conformable Fractional Integrals

  • Chapter
  • First Online:
Advances in Mathematical Inequalities and Applications

Part of the book series: Trends in Mathematics ((TM))

  • 765 Accesses

Abstract

An integral operator is sometimes called an integral transformation. In the fractional analysis, Riemann–Liouville integral operator (transformation) of fractional integral is defined as

$$S_{\alpha }(x)= \frac{1}{\Gamma (x)} \int _{0}^{x} (x-t)^{\alpha -1}f(t)dt$$

where f(t) is any integrable function on [0, 1] and \(\alpha >0\), t is in domain of f.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order (Springer, Wien, 1997), pp. 223–276

    Chapter  Google Scholar 

  2. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, USA, 1993), p. 2

    MATH  Google Scholar 

  3. I. Podlubni, Fractional Differential Equations (Academic Press, San Diego, 1999)

    Google Scholar 

  4. S.G. Samko, et al., Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, Yverdon et alibi (1993)

    Google Scholar 

  5. A.A. Kilbas, H.M. Sirivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Nort-Holland Mathematics Studies, vol. 204 (Elsevier Science B. V, Amsterdam, 2006)

    Google Scholar 

  6. G. Anastassiou, M.R. Hooshmandasl, A. Ghasemi, F. Moftakharzadeh, Montgomery identities for fractional integrals and related fractional inequalities. J. Ineq. Pure Appl. Math. 10(4) (2009) Art. 97

    Google Scholar 

  7. Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 1(1), 51–58 (2010)

    Article  MathSciNet  Google Scholar 

  8. E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 63, 1147–1154 (2012)

    Article  MathSciNet  Google Scholar 

  9. M.Z. Sarıkaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration. Abstr. Appl. Anal. 2012, 10 (2012). https://doi.org/10.1155/2012/428983

    Article  MathSciNet  MATH  Google Scholar 

  10. M.Z. Sarıkaya, E. Set, H. Yaldız, N. Başak, HermiteHadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)

    Article  Google Scholar 

  11. J. Tariboon, S.K. Ntouyas, W. Sudsutad, Some New Riemann-Liouville Fractional Integral Inequalities. Int. J. Math. Math. Sci. 2014, Article ID 869434, 6 (2014)

    Google Scholar 

  12. M.Z. Sarıkaya, H. Filiz, M.E. Kiriş, On some generalized integral inequalities for Riemann-Liouville fractional integrals. Filomat 29(6), 1307–1314 (2015)

    Article  MathSciNet  Google Scholar 

  13. E. Set, A.O. Akdemir, M.E. Özdemir, Simpson type integral inequalities for convex functions via Riemann-Liouville integrals. Filomat 31(14), 4415–4420 (2017)

    Article  MathSciNet  Google Scholar 

  14. M.Z. Sarıkaya, H. Yıldırım, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2017)

    Article  MathSciNet  Google Scholar 

  15. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  16. T. Abdeljawad, On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  17. E. Set, İ. Mumcu, M.E. Özdemir, On the more general Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals. Topological Algebra Appl. Special Issue, Adv. ATSA 5 (2017)

    Google Scholar 

  18. E. Set, A. Gözpınar, A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional integrals. Stud. Univ. Babes-Bolyai Math. 62(3), 309–323 (2017)

    Article  MathSciNet  Google Scholar 

  19. E. Set, B. Çelik, Certain Hermite-Hadamard type inequalities associated with conformable fractional integral operators. Creative Math. Inf. 26(3), 321–330 (2017)

    MathSciNet  MATH  Google Scholar 

  20. E. Set, A. Gözpınar, A. Ekinci, Hermite-Hadamard type inequalities via conformable fractional integrals. Acta Math. Univ. Comenianae LXXXV I(2), 309–320 (2017)

    MathSciNet  MATH  Google Scholar 

  21. E. Set, M.Z. Sarıkaya, A. Gözpınar, Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities. Creative Math. Inf. 26(2), 221–229 (2017)

    MathSciNet  MATH  Google Scholar 

  22. M.U. Awan, M.A. Noor, M.V. Mihai, K.I. Noor, Conformable fractional Hermite-Hadamard inequalities via preinvex functions. Tbilisi Math. J. 10(4), 129–141 (2017)

    Article  MathSciNet  Google Scholar 

  23. M.Z. Sarıkaya, H. Budak, New inequalities of Opial type for conformable fractional integrals. Turk. J. Math. 41, 1164–1173 (2017)

    Article  MathSciNet  Google Scholar 

  24. E. Set, A.O. Akdemir, İ. Mumcu, Hermite-Hadamard’s Inequality and Its Extensions for Conformable Fractional Integrals of Any Order \(\alpha >0\), Creative Mathematics and Informatics. 27(2), 197–206 (2018)

    Google Scholar 

  25. E. Set, A.O. Akdemir, İ. Mumcu, Ostrowski type inequalities involving special functions via conformable fractional integrals. J. Adv. Math. Stud 10(3), 386–395 (2017)

    MathSciNet  MATH  Google Scholar 

  26. A.O. Akdemir, A. Ekinci, E. Set, Conformable fractional integrals and related new integral inequalities. J. Nonlinear Convex Anal. 18(4), 661–674 (2017)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Emin Ozdemir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Emin Ozdemir, M., Akdemir, A.O., Set, E., Ekinci, A. (2018). On the Integral Inequalities for Riemann–Liouville and Conformable Fractional Integrals. In: Agarwal, P., Dragomir, S., Jleli, M., Samet, B. (eds) Advances in Mathematical Inequalities and Applications. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-3013-1_9

Download citation

Publish with us

Policies and ethics