Skip to main content

Microwave Bipolar Transistors

  • Chapter
  • First Online:
Microwave Active Devices and Circuits for Communication

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 533))

  • 1486 Accesses

Abstract

This chapter describes various types of microwave bipolar junction transistors (BJTs). Frequency limitation of BJT and structural modification for suitable operation at microwave frequency band are also discussed. The chapter also describes GaAs- and SiGe-based hetero-junction bipolar transistors (HBTs) suitable for microwave and mmwave applications. Temperature dependency of BJTs and its effects on circuit performance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sze SM (1981) Physics of semiconductor devices, 2nd edn, Wiley Eastern Limited

    Google Scholar 

  2. Schwierz F, Schippel C (2005) Performance trends of Si-based RF transistors. In: 2005 IEEE conference on electron devices and solid-state circuits, Dec 2005, pp 299–304

    Google Scholar 

  3. Johnson E (1965) Physical limitations on frequency and power parameters of transistors. IRE Int Conv Rec 13:27–34

    Article  Google Scholar 

  4. Webster WM (1954) On the variation of junction-transistor current amplification factor with emitter current. IRE Proc 42(6):914–920

    Article  Google Scholar 

  5. Kirk CT (1962) A theory of transistor cutoff frequency fT falloff at high current densities. IRE Trans Electron Devices 9(2):164–174

    Article  Google Scholar 

  6. Lanyon HPD, Tuft RA (1978) Bandgap narrowing in heavily doped silicon. In: IEEE technical digest on international electron device meet, p 316

    Google Scholar 

  7. Arora N, Hauser J, Roulston D (1982) Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans Electron Devices ED-29:292

    Google Scholar 

  8. Kroemer H (1957) Theory of a wide-gap emitter for transistors. Proc IRE 45(11):1535–1537

    Article  Google Scholar 

  9. Bardin JC (2009) Silicon-germanium heterojunction bipolar transistors for extremely low-noise applications. Ph.D. thesis, California Institute of Technology, Pasadena, California

    Google Scholar 

  10. Cressler J, Crabbe E, Comfort J, Stork J, Sun J-C (1993) On the profile design and optimization of epitaxial Si- and SiGe-base bipolar technology for 77 K applications. IEEE Trans Electron Devices 40(3):542–556

    Article  Google Scholar 

  11. Krithivasan R, Lu Y, Cressler J, Rieh J-S, Khater M, Ahlgren D, Freeman G (2006) Half terahertz operation of SiGe HBTs. IEEE Electron Device Lett 27(7):567–569

    Article  Google Scholar 

  12. Yuan J, Krithivasan R, Cressler J, Khater M, Ahlgren D, Joseph A (2007) On the frequency limits of SiGe HBTs for terahertz applications. In: Bipolar/BiCMOS circuits and technology meeting, 2007, BCTM’07. IEEE, 30 2007–2 Oct 2007, pp 22–25

    Google Scholar 

  13. Pruvost S, Delcourt S, Telliez I, Laurens M, Bourzgui N, Danneville F, Monroy A, Dambrine G (2005) Microwave and noise performance of SiGe BiCMOS HBT under cryogenic temperatures. IEEE Electron Device Lett 26:105–108

    Article  Google Scholar 

  14. Woods B, Mantooth H, Cressler J (2007) SiGe HBT compact modeling for extreme temperatures. In: 2007 international semiconductor device research symposium, Dec 2007, pp 1–2

    Google Scholar 

  15. Tasker P, Fernandez-Barciela M (2002) HBT small signal T and Pi model extraction using a simple, robust and fully analytical procedure. In: IEEEMTT-S international microwave symposium digest, 2002, vol 3, pp 2129–2132

    Google Scholar 

  16. Gobert Y, Tasker P, Bachem K (1997) A physical, yet simple, small-signal equivalent circuit for the heterojunction bipolar transistor. IEEE Trans Microw Theory Tech 45(1):149–153

    Article  Google Scholar 

  17. Jia S, Yang R, Guo H (2011) SiGe heterojunction bipolar transistor and its applications in microwave communication systems. In: 7th international conference on wireless communications, networking and mobile computing (WiCOM), Sept 2011

    Google Scholar 

  18. Escotte L, Phillippe Roux J, Plana R, Graffeuil J, Gruhle A (1995) Noise modeling of microwave heterojunction bipolar transistors. IEEE Trans Electron Devices 42(5):883–889

    Google Scholar 

  19. Schamacher H, Erben U, Gruhle A (1994) Low noise performance of SiGe heterojunction bipolar transistors. In: Proceedings of IEEE MTT-S microwave symposium, pp 1167–1170

    Google Scholar 

  20. Monier C, Cavus A, Sandhu RS, Lange MD, Chang PC, Sawdai DJ, Gambin VF, Gutierrez Aitken AL (2004) High indium content InAlAs/InGaAs HBT technology for low-power, high-speed applications. In: 205th meeting, The Electrochemical Society Inc.

    Google Scholar 

  21. Griffith Z, Lind E, Rodwell M, Fang X-M, Loubychev D, Wu Y, Fastenau J, Liu A (2007) Sub-300 nm InGaAs/InP type-i DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fmax and 416 GHz ft. In: IEEE 19th international conference on indium phosphide and related materials, 2007, IPRM’07, May 2007, pp 403–406

    Google Scholar 

  22. Radisic V, Sawdai D, Scott D, Deal WR, Dang L, Li D, Cavus A, Fung A, Samoska L, To R, Gaier T, Lai R (2008) Demonstration of 184 and 255-GHz amplifiers using InP HBT technology. IEEE Microw Wirel Compon Lett 18(4):281283

    Article  Google Scholar 

  23. McCarthy LS (1999) AlGaN/GaN heterojunction bipolar transistor. IEEE Electron Device Lett 20(6):277–279

    Article  Google Scholar 

  24. McCarthy LS, Smorchkova IP, Xing H, Fini P, Limbo J, Pulfery DL, Speck JS, Rodwel MJW, DenBaars SP, Mishra UK (2001) GaN HBT: toward an RF device. IEEE Trans Electron Devices 48(3):543–551

    Article  Google Scholar 

  25. Allford Craig (2016) Resonant Tunnelling in GaAs/AlGaAs Triple Barrier Heterostructures. Ph.D. dissertation, Cardiff University

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Chandra Bera .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bera, S.C. (2019). Microwave Bipolar Transistors. In: Microwave Active Devices and Circuits for Communication. Lecture Notes in Electrical Engineering, vol 533. Springer, Singapore. https://doi.org/10.1007/978-981-13-3004-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3004-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3003-2

  • Online ISBN: 978-981-13-3004-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics