Skip to main content

Deterministic Frontier Analysis

  • Chapter
  • First Online:

Abstract

Production frontiers are often represented by distance, revenue, cost and/or profit functions. These functions can sometimes be written in the form of regression models in which the explanatory variables are deterministic (i.e., not random). This chapter explains how to estimate and draw inferences concerning the unknown parameters in so-called deterministic frontier models (DFMs). It then explains how the estimated parameters can be used to predict levels of efficiency and analyse productivity change. The focus is on least squares estimators and predictors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See, for example, Greene (1980b, Eq. 1) , Färe et al. (1993, Eq. 14) , Grosskopf et al. (1995, Eq. 11) , Coelli and Perelman (1999, Eq. 5) , Ray (1998, Eq. 21) , Fuentes et al. (2001, Eq. 3) , Orea (2002, Eq. 5) , Reig-Martinez et al. (2001, Eq. 13) , O’Donnell and Coelli (2005, Eq. 5) , Vardanyan and Noh (2006, Eq. 3.1) , Ferrari (2006, Eq. 2) , Zhang and Garvey (2008, Eq. 9) and Diewert and Fox (2010, p. 82) .

  2. 2.

    If outputs and inputs are strongly disposable, then the output distance function is nondecreasing in outputs and nonincreasing in inputs for all feasible input-output combinations. If the output distance function is a translog function, then it is possible to find feasible input-output combinations where these monotonicity properties do not hold. Ergo, the output distance function cannot be a translog function. If there is more than one output and the output distance function is a translog function, then there exists a feasible input-output combination where at least one shadow revenue share lies outside the unit interval.

  3. 3.

    If there is more than one output and the output distance function is a double-log function, then output sets are unbounded (O’Donnell 2016 , p.  330).

  4. 4.

    See, for example, Diewert (1980, p. 462) , Deprins et al. (1984, p. 292) , Althin et al. (1996, Eq. 2.1) , Coelli and Perelman (1999, Eq. 10) , Coelli et al. (2003, p. 44) , Tsekouras et al. (2004, p. 98) , Hajargasht et al. (2008, Eq. 9) , Stern (2010, p. 351) , Das and Kumbhakar (2012, p. 211) and Coelli et al. (2013, Eq. 3) .

  5. 5.

    If outputs and inputs are strongly disposable, then the input distance function is nonincreasing in outputs and nondecreasing in inputs for all feasible input-output combinations. If the input distance function is a translog function, then it is possible to find feasible input-output combinations where these monotonicity properties do not hold. Ergo, the input distance function cannot be a translog function. If there is more than one input and the input distance function is a translog function, then there exists a feasible input-output combination where at least one shadow cost share lies outside the unit interval.

  6. 6.

    If the input distance function is a double-log function, then the output distance function is also a double-log function. If there is more than one output and the output distance function is a double-log function, then output sets are unbounded (O’Donnell 2016 , p. 330).

  7. 7.

    See, for example, Banker et al. (2003, Eq. 5).

  8. 8.

    If firms are price takers in output markets, then the revenue function is nondecreasing in p for all nonnegative x. If the revenue function is a translog function, then there exists a nonnegative p and a nonnegative x where this monotonicity property does not hold. Ergo, the revenue function cannot be a translog function. If (a) firms are price takers in output markets, (b) there is more than one output, and (c) the revenue function is a translog function, then there exists a nonnegative p and a nonnegative x where at least one revenue-maximising revenue share lies outside the unit interval.

  9. 9.

    If firms are price takers in output markets and the revenue function is a double-log function, then the output distance function is also a double-log function. If there is more than one output and the output distance function is a double-log function, then output sets are unbounded (O’Donnell 2016 , p.  330).

  10. 10.

    See, for example, Greene (1980b, Eq. 3) , Kopp and Diewert (1982, p. 328) , Banker et al. (1986, Eq. 1) , Baltagi and Griffin (1988, Eq. 4) , Kumbhakar (1997, Eq. 11) , Nadiri and Nandi (1999, p. 489) , Kumbhakar and Lovell (2000, Eq. 4.2.27) and Zheng and Bloch (2014, p.  207) .

  11. 11.

    If firms are price takers in input markets, then the cost function is nondecreasing in w for all producible q. If the cost function is a translog function, then there exists a nonnegative w and a producible q where this monotonicity property does not hold. Ergo, the cost function cannot be a translog function. If (a) firms are price takers in input markets, (b) there is more than one input, and (c) the cost function is a translog function, then there exists a nonnegative w and a producible q where at least one cost-minimising cost share lies outside the unit interval.

  12. 12.

    If firms are price takers in input markets and the cost function is a double-log function, then the output distance function is also a double-log function. If there is more than one output and the output distance function is a double-log function, then output sets are unbounded (O’Donnell 2016 , p. 330).

  13. 13.

    See, for example, Diewert (1980, Eq. 8) , Kumbhakar and Bhattacharyya (1992, Eq. 8) , Chaudhary et al. (1999, Eq. 1) , Kumbhakar (2001, Eqs. 7, 8) and Kumbhakar (2006, p. 254).

  14. 14.

    If firms are price takers in output and input markets, then profit functions are nondecreasing in p for all nonnegative w. If the profit function is a translog function, then there exists a nonnegative w where this monotonicity property does not hold. Ergo, the profit function cannot be a translog function. If (a) firms are price takers in output and input markets, (b) there is more than one output, and (c) the profit function is a translog function, then there exists a nonnegative w where at least one profit-maximising revenue share lies outside the unit interval.

  15. 15.

    Some authors make these assumptions implicitly. For example, Hsieh and Klenow (2009, Eq. 4) assume that production functions are double-log functions with observation-invariant slope coefficients that are positive and sum to one. This implies GA1 to GA4.

  16. 16.

    GA1 to GA3 imply that \(Q(q_{it})=A^t(z_{it})F(x_{it})D_O^t(x_{it}, q_{it},z_{it})\) where F(.) is a nonnegative,, linearly-homogenous, scalar-valued function (see Proposition 17 in Appendix A.1). GA4 implies that F(.) is also nondecreasing. Thus, it can be viewed as an aggregate input.

  17. 17.

    GA5 to GA7 imply that \(D^{t}_I(x_{it},q_{it},z_{it})=1\) (see Sect. 4.4.2). GA3 implies that \(D^{t}_O(x_{it},q_{it},z_{it})=1/D^{t}_I(x_{it},q_{it},z_{it})\) (see the discussion of O10 and DO10 in Sects. 2.1.1 and 2.4.1).

  18. 18.

    If there is no environmental change, then \(A^t(z_{it})\) reduces to a measure of technical change only. In this book, the term ‘technical change’ refers to the discovery of new technologies. In contrast, Solow (1957) uses the term ‘technical change’ “as a shorthand expression for any kind of shift in the production function. Thus, slowdowns, speedups, improvements in the education of the labor force, and all sorts of things will appear as [technical change]” (p. 312).

  19. 19.

    Elsewhere in the deterministic frontier literature, the term ‘COLS’ is often used to refer to slightly different estimators. These alternative estimators involve adjusting \(\alpha ^*\) upwards by an amount that depends on the probability distributions of the inefficiency effects. In this book, these alternative estimators are referred to as modified ordinary least squares (MOLS) estimators. The idea behind MOLS estimation of DFMs can be traced back at least as far as Richmond (1974) . A problem with MOLS estimators is that some observations may lie above the estimated frontier. For more details, see Førsund et al. (1980, p. 12) .

  20. 20.

    For more details concerning the properties of NLS estimators, see, for example, Hill et al. (2011, p. 362) .

  21. 21.

    This type of heteroskedasticity can arise when the inefficiency effects are gamma random variables and the scale parameters are the reciprocals of the shape parameters. It is also possible to imagine some types of group heteroskedasticity where the inefficiency effects have the same mean.

  22. 22.

    A function f(.) is even if \(f(x) = f(-x)\) for all x and \(-x\) in the domain of f(.). Examples include \(f(x)=|x|\) and \(f(x)=x^2\).

  23. 23.

    See, for example, Hill et al. (2011, p. 414).

  24. 24.

    They are, in fact, super-consistent. This means that, as the sample size increases, the distributions of the OLS estimators collapse around the true parameter values even faster than usual.

References

  • Afriat S (1972) Efficiency estimation of production functions. Int Econ Rev 13(3):568–598

    Article  Google Scholar 

  • Aigner D, Chu S (1968) On estimating the industry production function. Am Econ Rev 58(4):826–839

    Google Scholar 

  • Althin R, Fare R, Grosskopf S (1996) Profitability and productivity changes: an application to Swedish pharmacies. Ann Oper Res 66:219–230

    Article  Google Scholar 

  • Amsler C, Leonard M, Schmidt P (2013) Estimation and inference in parametric deterministic frontier models. J Prod Anal 40(3):293–305

    Article  Google Scholar 

  • Baltagi B, Griffin J (1988) A general index of technical change. J Polit Econ 96(1):20–41

    Article  Google Scholar 

  • Banker R, Conrad R, Strauss R (1986) A comparative application of data envelopment analysis and translog methods: an illustrative study of hospital production. Manage Sci 32(1):30–44

    Article  Google Scholar 

  • Banker R, Chang H, Cunningham R (2003) The public accounting industry production function. J Acc Econ 35(2):255–281

    Article  Google Scholar 

  • Bhargava A, Franzini L, Narendranathan W (1982) Serial correlation in the fixed effects model. Rev Econ Stud 49(4):533–549

    Article  Google Scholar 

  • Bickel P, Rosenblatt M (1973) On some global measures of the deviations of density function estimates. Ann Stat 1:1071–1095

    Article  Google Scholar 

  • Breusch T (1978) Testing for autocorrelation in dynamic linear models. Aust Econ Papers 17:334–355

    Article  Google Scholar 

  • Breusch T, Pagan A (1979) A simple test for heteroskedasticity and random coefficient variation. Econometrica 47:1287–1294

    Article  Google Scholar 

  • Breusch T, Pagan A (1980) The Lagrange multiplier test and its applications to model specification in econometrics. Rev Econ Stud 47:239–253

    Article  Google Scholar 

  • Caselli F, Coleman W (2006) The world technology frontier. Am Econ Rev 93(3):499–522

    Article  Google Scholar 

  • Chaudhary M, Khan M, Naqvi K, Ahmad M (1999) Estimates of farm output supply and input demand elasticities: the translog profit function approach [with comments]. Pak Dev Rev 37(4):1031–1050

    Google Scholar 

  • Coelli T, Perelman S (1999) A comparison of parametric and non-parametric distance functions: with application to European railways. Eur J Oper Res 117(2):326–339

    Article  Google Scholar 

  • Coelli T, Estache A, Perelman S, Trujillo L (2003) A primer on efficiency measurement for utilities and transport regulators. WBI Development Studies, The World Bank

    Book  Google Scholar 

  • Coelli T, Gautier A, Perelman S, Saplacan-Pop R (2013) Estimating the cost of improving quality in electricity distribution: a parametric distance function approach. Energy Policy 53:287–297

    Article  Google Scholar 

  • Cragg J, Donald S (1993) Testing identifiability and specification in instrumental variable models. Econometric Theory 9:222–240

    Article  Google Scholar 

  • Das A, Kumbhakar S (2012) Productivity and efficiency dynamics in Indian banking: an input distance function approach incorporating quality of inputs and outputs. J Appl Econometrics 27(2):205–234

    Article  Google Scholar 

  • Deprins D, Simar L, Tulkens H (1984) Measuring labor efficiency in post offices. In: Marchand M, Pestieau P, Tulkens H (eds) The performance of public enterprises: concepts and measurements. North Holland Publishing Company, Amsterdam

    Google Scholar 

  • Diewert W (1980) Aggregation problems in the measurement of capital. In: Usher D (ed) The measurement of capital. University of Chicago Press

    Google Scholar 

  • Diewert W, Fox K (2010) Malmquist and Törnqvist productivity indexes: returns to scale and technical progress with imperfect competition. J Econ 101(1):73–95

    Article  Google Scholar 

  • Durbin J, Watson G (1950) Testing for serial correlation in least squares regression. I. Biometrika 37(3–4):409–428

    Google Scholar 

  • Durbin J, Watson G (1951) Testing for serial correlation in least squares regression. II. Biometrika 38(1–2):159–179

    Article  Google Scholar 

  • Enders W (2004) Applied econometric time series, 2nd edn. Wiley, New Jersey

    Google Scholar 

  • Engle R, Granger C (1987) Cointegration and error-correction: representation, estimation and testing. Econometrica 55:251–276

    Article  Google Scholar 

  • Engle R, Yoo B (1987) Forecasting and testing in co-integrated systems. J Econometrics 35(1):143–159

    Article  Google Scholar 

  • Fan Y (1994) Testing the goodness of fit of a parametric density function by Kernel method. Econometric Theory 10(2):316–356

    Article  Google Scholar 

  • Färe R, Grosskopf S, Lovell C, Yaisawarng S (1993) Derivation of shadow prices for undesirable outputs: a distance function approach. Rev Econ Stat 75(2):374–380

    Article  Google Scholar 

  • Ferrari A (2006) The internal market and hospital efficiency: a stochastic distance function approach. Appl Econ 38(18):2121–2130

    Article  Google Scholar 

  • Førsund F, Lovell C, Schmidt P (1980) A survey of frontier production functions and of their relationship to efficiency measurement. J Econometrics 13(1):5–25

    Article  Google Scholar 

  • Fuentes H, Grifell-Tatjé E, Sergio P (2001) A parametric distance function approach for Malmquist productivity index estimation. J Prod Anal 15(2001):79–94

    Article  Google Scholar 

  • Glesjer H (1969) A new test for heteroskedasticity. J Am Stat Assoc 64:316–323

    Article  Google Scholar 

  • Godfrey L (1978a) Testing against general autoregressive and moving average error models when the regressors include lagged dependent variables. Econometrica 46(6):1293–1301

    Article  Google Scholar 

  • Godfrey L (1978b) Testing for multiplicative heteroskedasticity. J Econometrics 8:227–236

    Google Scholar 

  • Goldfeld S, Quandt R (1972) Nonlinear methods in econometrics. North-Holland, Amsterdam

    Google Scholar 

  • Greene W (1980a) Maximum likelihood estimation of econometric frontier functions. J Econometrics 13(1):27–56

    Article  Google Scholar 

  • Greene W (1980b) On the estimation of a flexible frontier production model. J Econometrics 13(1):101–115

    Article  Google Scholar 

  • Greene W (2008) Econometric analysis, 6th edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Grosskopf S, Margaritis D, Valdmanis V (1995) Estimating output substitutability of hospital services: a distance function approach. Eur J Oper Res 80(1995):575–587

    Article  Google Scholar 

  • Hajargasht G, Coelli T, Rao D (2008) A dual measure of economies of scope. Econ Lett 100(2):185–188

    Article  Google Scholar 

  • Hill R, Griffiths W, Lim G (2011) Principles of econometrics, 4th edn. Wiley, New Jersey

    Google Scholar 

  • Hsieh CT, Klenow P (2009) Misallocation and manufacturing TFP in China and India. Q J Econ 124(4):1403–1448

    Article  Google Scholar 

  • Koenker R, Bassett G (1982) Robust tests for heteroscedasticity based on regression quantiles. Econometrica 50(1):43–61

    Article  Google Scholar 

  • Kopp R, Diewert W (1982) The decomposition of frontier cost function deviations into measures of technical and allocative efficiency. J Econometrics 19(2–3):319–331

    Article  Google Scholar 

  • Kumbhakar S (1997) Modeling allocative inefficiency in a translog cost function and cost share equations: an exact relationship. J Econometrics 76(1–2):351–356

    Article  Google Scholar 

  • Kumbhakar S (2001) Estimation of profit functions when profit is not maximum. Am J Agri Econ 83(1):1–19

    Article  Google Scholar 

  • Kumbhakar S (2006) Specification and estimation of nonstandard profit functions. Empirical Econ 31(1):243–260

    Article  Google Scholar 

  • Kumbhakar S, Bhattacharyya A (1992) Price distortions and resource-use efficiency in Indian agriculture: a restricted profit function approach. Rev Econ Stat 74(2):231–239

    Article  Google Scholar 

  • Kumbhakar S, Lovell C (2000) Stochastic frontier analysis. Cambridge University Press

    Google Scholar 

  • Nadiri M, Nandi B (1999) Technical change, markup, divestiture, and productivity growth in the U.S. telecommunications industry. Rev Econ Stat 81(3):488–498

    Article  Google Scholar 

  • Newey W, Powell J (1987) Asymmetric least squares estimation and testing. Econometrica 55(4):819–847

    Article  Google Scholar 

  • O’Donnell C (2016) Using information about technologies, markets and firm behaviour to decompose a proper productivity index. J Econometrics 190(2):328–340

    Article  Google Scholar 

  • O’Donnell C, Coelli T (2005) A Bayesian approach to imposing curvature on distance functions. J Econometrics 126(2):493–523

    Article  Google Scholar 

  • O’Mahony M, Timmer M (2009) Output, input and productivity measures at the industry level: the EU KLEMS database. Econ J 119(538):F374–F403

    Article  Google Scholar 

  • Orea L (2002) Parametric decomposition of a generalized Malmquist productivity index. J Prod Anal 18:5–22

    Google Scholar 

  • Pagan A, Ullah A (1999) Nonparametric econometrics. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Pesaran H (2004) General diagnostic tests for cross section dependence in panels. CESifo working paper 1229, Ifo Institute, Center for Economic Studies

    Google Scholar 

  • Ray S (1998) Measuring scale efficiency from a translog production function. J Prod Anal 11(2):183–194

    Article  Google Scholar 

  • Reig-Martinez E, Picazo-Tadeo A, Hernandez-Sancho F (2001) The calculation of shadow prices for industrial wastes using distance functions: an analysis for Spanish ceramic pavements firms. Int J Prod Econ 69(2001):277–285

    Article  Google Scholar 

  • Richmond J (1974) Estimating the efficiency of production. Int Econ Rev 15(2):515–521

    Article  Google Scholar 

  • Rosenblatt M (1975) A quadratic measure of deviation of two-dimensional density estimates and a test of independence. Ann Stat 3:1–14

    Article  Google Scholar 

  • Schmidt P (1976) On the statistical estimation of parametric frontier production functions. Rev Econ Stat 58(2):238–239

    Article  Google Scholar 

  • Solow R (1957) Technical change and the aggregate production function. Rev Econ Stat 39(3):312–320

    Article  Google Scholar 

  • Stern D (2010) Derivation of the Hicks, or direct, elasticity of substitution using the input distance function. Econ Lett 108(3):349–351

    Article  Google Scholar 

  • Tsekouras K, Pantzios CJ, Karagiannis G (2004) Malmquist productivity index estimation with zero-value variables: the case of Greek prefectural training councils. Int J Prod Econ 89(1):95–106

    Article  Google Scholar 

  • Vardanyan M, Noh DW (2006) Approximating pollution abatement costs via alternative specifications of a multi-output production technology: a case of the US electric utility industry. J Environ Manage 80(2)

    Article  Google Scholar 

  • White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48:817–838

    Article  Google Scholar 

  • Winsten C (1957) Discussion on Mr. Farrell’s paper. J R Stat Soc Ser A (General) 120(3):282–84

    Google Scholar 

  • Zhang T, Garvey E (2008) A comparative analysis of multi-output frontier models. J Zhejiang Univ Sci A 9(10):1426–1436

    Article  Google Scholar 

  • Zheng S, Bloch H (2014) Australia’s mining productivity decline: implications for MFP measurement. J Prod Anal 41(2):201–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. O’Donnell .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Donnell, C.J. (2018). Deterministic Frontier Analysis. In: Productivity and Efficiency Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-13-2984-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2984-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2982-1

  • Online ISBN: 978-981-13-2984-5

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics