Oral Carcinogenesis and Malignant Transformation

  • Camile S. FarahEmail author
  • Kate Shearston
  • Amanda Phoon Nguyen
  • Omar Kujan
Part of the Head and Neck Cancer Clinics book series (HNCC)


Cancer of the oral cavity and oropharynx is a significant health burden, with over 300,000 new cases diagnosed annually [1]. Oral squamous cell carcinoma (OSCC) constitutes 95% of these malignancies and is mostly preceded by lesions termed oral potentially malignant disorders (OPMDs) that have a high tendency for malignant transformation [2]. Despite advances in diagnosis and treatment modalities, the survival rate of OSCC has not changed significantly in the last five decades [3]. The poor prognosis of oral cancer can largely be attributed to its frequent diagnosis at an advanced stage [4]. Understanding the process and natural history of oral carcinogenesis has the capacity to improve the clinical outcomes of patients with OSCC through early detection and effective OPMD management. This chapter discusses the most recent concepts and knowledge on oral carcinogenesis and malignant transformation of OPMDs.


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefGoogle Scholar
  2. 2.
    Johnson NW, Jayasekara P, Amarasinghe AA. Squamous cell carcinoma and precursor lesions of the oral cavity: epidemiology and aetiology. Periodontol 2000. 2011;57(1):19–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008;371(9625):1695–709.PubMedCrossRefGoogle Scholar
  4. 4.
    Speight PM, Epstein J, Kujan O, Lingen MW, Nagao T, Ranganathan K, Vargas P. Screening for oral cancer-a perspective from the Global Oral Cancer Forum. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:680.PubMedCrossRefGoogle Scholar
  5. 5.
    Winning TA, Townsend GC. Oral mucosal embryology and histology. Clin Dermatol. 2000;18(5):499–511.PubMedCrossRefGoogle Scholar
  6. 6.
    Garant PR. Oral cells and tissues. Chicago, IL: Quintessence Pub. Co.; 2003.Google Scholar
  7. 7.
    Berkovitz BKB, Holland GR, Moxham BJ. Oral anatomy, histology and embryology. Edinburgh: Mosby; 2014.Google Scholar
  8. 8.
    Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr. 2001;(29):7–15.CrossRefGoogle Scholar
  9. 9.
    Lehrer MS, Sun TT, Lavker RM. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci. 1998;111(Pt 19):2867–75.PubMedGoogle Scholar
  10. 10.
    Hume WJ, Potten CS. Proliferative units in stratified squamous epithelium. Clin Exp Dermatol. 1983;8(1):95–106.PubMedCrossRefGoogle Scholar
  11. 11.
    Michcik A, Cichorek M, Daca A, Chomik P, Wojcik S, Zawrocki A, Wlodarkiewicz A. Tobacco smoking alters the number of oral epithelial cells with apoptotic features. Folia Histochem Cytobiol. 2014;52(1):60–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma--an update. CA Cancer J Clin. 2015;65(5):401–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4-5):309–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Tanaka T, Ishigamori R. Understanding carcinogenesis for fighting oral cancer. J Oncol. 2011;2011:603740.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Chaturvedi AK, Anderson WF, Lortet-Tieulent J, Curado MP, Ferlay J, Franceschi S, Rosenberg PS, Bray F, Gillison ML. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol. 2013;31(36):4550–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dost F, Do L, Farah CS. Lesion evaluation, screening and identification of oral neoplasia study: an assessment of high-risk Australian populations. Community Dent Oral Epidemiol. 2016;44(1):64–75.PubMedCrossRefGoogle Scholar
  17. 17.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefGoogle Scholar
  19. 19.
    Guo T, Califano JA. Molecular biology and immunology of head and neck cancer. Surg Oncol Clin N Am. 2015;24(3):397–407.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.CrossRefGoogle Scholar
  21. 21.
    Mohan M, Jagannathan N. Oral field cancerization: an update on current concepts. Oncol Rev. 2014;8(1):244.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Boyle JO, Hakim J, Koch W, van der Riet P, Hruban RH, Roa RA, Correo R, Eby YJ, Ruppert JM, Sidransky D. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res. 1993;53(19):4477–80.PubMedGoogle Scholar
  23. 23.
    Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63(8):1727–30.PubMedGoogle Scholar
  24. 24.
    Napier SS, Speight PM. Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med. 2008;37(1):1–10.CrossRefGoogle Scholar
  25. 25.
    Warnakulasuriya S, Johnson NW, van der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007;36(10):575–80.CrossRefGoogle Scholar
  26. 26.
    Warnakulasuriya S, Ariyawardana A. Malignant transformation of oral leukoplakia: a systematic review of observational studies. J Oral Pathol Med. 2016;45(3):155–66.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kujan O, Oliver RJ, Khattab A, Roberts SA, Thakker N, Sloan P. Evaluation of a new binary system of grading oral epithelial dysplasia for prediction of malignant transformation. Oral Oncol. 2006;42(10):987–93.CrossRefGoogle Scholar
  28. 28.
    Barnes L, Eveson JW, Reichart P, Sidransky D, editors. World Health Organization classification of tumours. Pathology and genetics of head and neck tumours. Lyon: IARC Press; 2005.Google Scholar
  29. 29.
    Karabulut A, Reibel J, Therkildsen MH, Praetorius F, Nielsen HW, Dabelsteen E. Observer variability in the histologic assessment of oral premalignant lesions. J Oral Pathol Med. 1995;24(5):198–200.CrossRefGoogle Scholar
  30. 30.
    Dost F, Le Cao K, Ford PJ, Ades C, Farah CS. Malignant transformation of oral epithelial dysplasia: a real-world evaluation of histopathologic grading. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117(3):343–52.CrossRefGoogle Scholar
  31. 31.
    Tanaka T, Kojima T, Okumura A, Yoshimi N, Mori H. Alterations of the nucleolar organizer regions during 4-nitroquinoline 1-oxide-induced tongue carcinogenesis in rats. Carcinogenesis. 1991;12(2):329–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Vered M, Yarom N, Dayan D. 4NQO oral carcinogenesis: animal models, molecular markers and future expectations. Oral Oncol. 2005;41(4):337–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Vairaktaris E, Spyridonidou S, Papakosta V, Vylliotis A, Lazaris A, Perrea D, Yapijakis C, Patsouris E. The hamster model of sequential oral oncogenesis. Oral Oncol. 2008;44(4):315–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Salley JJ. Experimental carcinogenesis in the cheek pouch of the Syrian hamster. J Dent Res. 1954;33(2):253–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Chang KW, Lin SC, Koos S, Pather K, Solt D. p53 and Ha-ras mutations in chemically induced hamster buccal pouch carcinomas. Carcinogenesis. 1996;17(3):595–600.PubMedCrossRefGoogle Scholar
  36. 36.
    Solt DB. Localization of gamma-glutamyl transpeptidase in hamster buccal pouch epithelium treated with 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst. 1981;67(1):193–200.PubMedGoogle Scholar
  37. 37.
    Kwong YY, Husain Z, Biswas DK. c-Ha-ras gene mutation and activation precede pathological changes in DMBA-induced in vivo carcinogenesis. Oncogene. 1992;7(8):1481–9.PubMedGoogle Scholar
  38. 38.
    Kohno Y, Patel V, Kim Y, Tsuji T, Chin BR, Sun M, Bruce Donoff R, Kent R, Wong D, Todd R. Apoptosis, proliferation and p12(doc-1) profiles in normal, dysplastic and malignant squamous epithelium of the Syrian hamster cheek pouch model. Oral Oncol. 2002;38(3):274–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Nagini S, Letchoumy PV, Thangavelu A, Ramachandran C. Of humans and hamsters: a comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas. Oral Oncol. 2009;45(6):e31–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Todd R, McBride J, Tsuji T, Donoff RB, Nagai M, Chou MY, Chiang T, Wong DT. Deleted in oral cancer-1 (doc-1), a novel oral tumor suppressor gene. FASEB J. 1995;9(13):1362–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Gordon HM, Kucera G, Salvo R, Boss JM. Tumor necrosis factor induces genes involved in inflammation, cellular and tissue repair, and metabolism in murine fibroblasts. J Immunol. 1992;148(12):4021–7.PubMedGoogle Scholar
  42. 42.
    Cwikla SJ, Tsuji T, McBride J, Wong DT, Todd R. doc-1--mediated apoptosis in malignant hamster oral keratinocytes. J Oral Maxillofac Surg. 2000;58(4):406–14.PubMedCrossRefGoogle Scholar
  43. 43.
    Tang XH, Osei-Sarfo K, Urvalek AM, Zhang T, Scognamiglio T, Gudas LJ. Combination of bexarotene and the retinoid CD1530 reduces murine oral-cavity carcinogenesis induced by the carcinogen 4-nitroquinoline 1-oxide. Proc Natl Acad Sci U S A. 2014;111(24):8907–12.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, Kiso WK, Schmitt DL, Waddell PJ, Bhaskara S, Jensen ST, Maley CC, Schiffman JD. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA. 2015;314(17):1850–60.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tanuma J, Hiai H, Shisa H, Hirano M, Semba I, Nagaoka S, Kitano M. Carcinogenesis modifier loci in rat tongue are subject to frequent loss of heterozygosity. Int J Cancer. 2002;102(6):638–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Foy JP, Tortereau A, Caulin C, Le Texier V, Lavergne E, Thomas E, Chabaud S, Perol D, Lachuer J, Lang W, Hong WK, Goudot P, Lippman SM, Bertolus C, Saintigny P. The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer. Oncotarget. 2016;7(24):35932–45.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.CrossRefGoogle Scholar
  48. 48.
    Field JK. The role of oncogenes and tumour-suppressor genes in the aetiology of oral, head and neck squamous cell carcinoma. J R Soc Med. 1995;88(1):35P–9P.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jurel SK, Gupta DS, Singh RD, Singh M, Srivastava S. Genes and oral cancer. Ind J Hum Genet. 2014;20(1):4–9.CrossRefGoogle Scholar
  50. 50.
    Shpitzer T, Hamzany Y, Bahar G, Feinmesser R, Savulescu D, Borovoi I, Gavish M, Nagler RM. Salivary analysis of oral cancer biomarkers. Br J Cancer. 2009;101(7):1194–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Aida J, Kobayashi T, Saku T, Yamaguchi M, Shimomura N, Nakamura K, Ishikawa N, Maruyama S, Cheng J, Poon SS, Sawabe M, Arai T, Takubo K. Short telomeres in an oral precancerous lesion: Q-FISH analysis of leukoplakia. J Oral Pathol Med. 2012;41(5):372–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Modrich P. Mechanisms in eukaryotic mismatch repair. J Biol Chem. 2006;281(41):30305–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nawroz H, van der Riet P, Hruban RH, Koch W, Ruppert JM, Sidransky D. Allelotype of head and neck squamous cell carcinoma. Cancer Res. 1994;54(5):1152–5.Google Scholar
  54. 54.
    Woodford D, Johnson SD, De Costa AM, Young MR. An Inflammatory cytokine milieu is prominent in premalignant oral lesions, but subsides when lesions progress to squamous cell carcinoma. J Clin Cell Immunol. 2014;5(3):pii: 230.CrossRefGoogle Scholar
  55. 55.
    Kujan O, Oliver R, Roz L, Sozzi G, Ribeiro N, Woodwards R, Thakker N, Sloan P. Fragile histidine triad expression in oral squamous cell carcinoma and precursor lesions. Clin Cancer Res. 2006;12(22):6723–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Smith J, Rattay T, McConkey C, Helliwell T, Mehanna H. Biomarkers in dysplasia of the oral cavity: a systematic review. Oral Oncol. 2009;45(8):647–53.PubMedCrossRefGoogle Scholar
  57. 57.
    Bernier J. Head and neck cancer: multimodality management. New York, NY: Springer; 2011.CrossRefGoogle Scholar
  58. 58.
    Kadashetti V, Chaudhary M, Patil S, Gawande M, Shivakumar KM, Patil S, Pramod RC. Analysis of various risk factors affecting potentially malignant disorders and oral cancer patients of Central India. J Cancer Res Ther. 2015;11(2):280–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Dionne KR, Warnakulasuriya S, Zain RB, Cheong SC. Potentially malignant disorders of the oral cavity: current practice and future directions in the clinic and laboratory. Int J Cancer. 2015;136(3):503–15.Google Scholar
  60. 60.
    Kumar S, Debnath N, Ismail MB, Kumar A, Kumar A, Badiyani BK, Dubey PK, Sukhtankar LV. Prevalence and risk factors for oral potentially malignant disorders in Indian population. Adv Prev Med. 2015;2015:208519.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Gupta B, Johnson NW. Systematic review and meta-analysis of association of smokeless tobacco and of betel quid without tobacco with incidence of oral cancer in South Asia and the Pacific. PLoS One. 2014;9(11):e113385.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Franco T, Trapasso S, Puzzo L, Allegra E. Electronic cigarette: role in the primary prevention of oral cavity cancer. Clin Med Insights Ear Nose Throat. 2016;9:7–12.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Holliday R, Kist R, Bauld L. E-cigarette vapour is not inert and exposure can lead to cell damage. Evid Based Dent. 2016;17(1):2–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Yu V, Rahimy M, Korrapati A, Xuan Y, Zou AE, Krishnan AR, Tsui T, Aguilera JA, Advani S, Crotty Alexander LE, Brumund KT, Wang-Rodriguez J, Ongkeko WM. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines. Oral Oncol. 2016;52:58–65.PubMedCrossRefGoogle Scholar
  65. 65.
    Sturgis EM, Cinciripini PM. Trends in head and neck cancer incidence in relation to smoking prevalence: an emerging epidemic of human papillomavirus-associated cancers? Cancer. 2007;110(7):1429–35.PubMedCrossRefGoogle Scholar
  66. 66.
    Li L, Psoter WJ, Buxo CJ, Elias A, Cuadrado L, Morse DE. Smoking and drinking in relation to oral potentially malignant disorders in Puerto Rico: a case-control study. BMC Cancer. 2011;11:324.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Khan Z, Khan S, Christianson L, Rehman S, Ekwunife O, Samkange-Zeeb F. Smokeless tobacco and oral potentially malignant disorders in South Asia: a protocol for a systematic review. Syst Rev. 2016;5(1):142.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ram H, Sarkar J, Kumar H, Konwar R, Bhatt ML, Mohammad S. Oral cancer: risk factors and molecular pathogenesis. J Maxillofac Oral Surg. 2011;10(2):132–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Solomon PR, Selvam GS, Shanmugam G. Polymorphism in ADH and MTHFR genes in oral squamous cell carcinoma of Indians. Oral Dis. 2008;14(7):633–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Petti S, Scully C. Association between different alcoholic beverages and leukoplakia among non- to moderate-drinking adults: a matched case-control study. Eur J Cancer (Oxford, England: 1990). 2006;42(4):521–7.CrossRefGoogle Scholar
  71. 71.
    Amarasinghe HK, Johnson NW, Lalloo R, Kumaraarachchi M, Warnakulasuriya S. Derivation and validation of a risk-factor model for detection of oral potentially malignant disorders in populations with high prevalence. Br J Cancer. 2010;103(3):303–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    McCullough MJ, Farah CS. The role of alcohol in oral carcinogenesis with particular reference to alcohol-containing mouthwashes. Aust Dent J. 2008;53(4):302–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Currie S, Farah C. Alcohol-containing mouthwash and oral cancer risk: a review of current evidence. OA Alcohol. 2014;2(1):4.Google Scholar
  74. 74.
    Dost F, Le Cao KA, Ford PJ, Farah CS. A retrospective analysis of clinical features of oral malignant and potentially malignant disorders with and without oral epithelial dysplasia. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(6):725–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Syrjanen S, Lodi G, von Bultzingslowen I, Aliko A, Arduino P, Campisi G, Challacombe S, Ficarra G, Flaitz C, Zhou HM, Maeda H, Miller C, Jontell M. Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis. 2011;17(Suppl 1):58–72.PubMedCrossRefGoogle Scholar
  76. 76.
    Cox M, Maitland N, Scully C. Human herpes simplex-1 and papillomavirus type 16 homologous DNA sequences in normal, potentially malignant and malignant oral mucosa. Eur J Cancer B Oral Oncol. 1993;29B(3):215–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Starr JR, Daling JR, Fitzgibbons ED, Madeleine MM, Ashley R, Galloway DA, Schwartz SM. Serologic evidence of herpes simplex virus 1 infection and oropharyngeal cancer risk. Cancer Res. 2001;61(23):8459–64.PubMedGoogle Scholar
  78. 78.
    Reddy SS, Sharma S, Mysorekar V. Expression of Epstein-Barr virus among oral potentially malignant disorders and oral squamous cell carcinomas in the South Indian tobacco-chewing population. J Oral Pathol Med. 2017;46:454.PubMedCrossRefGoogle Scholar
  79. 79.
    Krogh P, Hald B, Holmstrup P. Possible mycological etiology of oral mucosal cancer: catalytic potential of infecting Candida albicans and other yeasts in production of N-nitrosobenzylmethylamine. Carcinogenesis. 1987;8(10):1543–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Sankari SL, Gayathri K, Balachander N, Malathi L. Candida in potentially malignant oral disorders. J Pharm Bioallied Sci. 2015;7(Suppl 1):S162–4.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Mohd Bakri M, Mohd Hussaini H, Rachel Holmes A, David Cannon R, Mary Rich A. Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma. J Oral Microbiol. 2010;2CrossRefGoogle Scholar
  82. 82.
    Shridhar K, Aggarwal A, Walia GK, Gulati S, Geetha AV, Prabhakaran D, Dhillon PK, Rajaraman P. Single nucleotide polymorphisms as markers of genetic susceptibility for oral potentially malignant disorders risk: review of evidence to date. Oral Oncol. 2016;61:146–51.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Prime SS, Thakker NS, Pring M, Guest PG, Paterson IC. A review of inherited cancer syndromes and their relevance to oral squamous cell carcinoma. Oral Oncol. 2001;37(1):1–16.PubMedCrossRefGoogle Scholar
  84. 84.
    Bishop AJR, Schiestl RH. Role of homologous recombination in carcinogenesis. Exp Mol Pathol. 2003;74(2):94–105.PubMedCrossRefGoogle Scholar
  85. 85.
    Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009;76(1):1–18.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Schoenfeld JD. Immunity in head and neck cancer. Cancer Immunol Res. 2015;3(1):12–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kang H, Kiess A, Chung CH. Emerging biomarkers in head and neck cancer in the era of genomics. Nat Rev Clin Oncol. 2015;12(1):11–26.PubMedCrossRefGoogle Scholar
  89. 89.
    Campbell JD, Mazzilli SA, Reid ME, Dhillon SS, Platero S, Beane J, Spira AE. The case for a pre-cancer genome atlas (PCGA). Cancer Prev Res (Phila). 2016;9(2):119–24.CrossRefGoogle Scholar
  90. 90.
    Kensler TW, Spira A, Garber JE, Szabo E, Lee JJ, Dong Z, Dannenberg AJ, Hait WN, Blackburn E, Davidson NE, Foti M, Lippman SM. Transforming cancer prevention through precision medicine and immune-oncology. Cancer Prev Res (Phila). 2016;9(1):2–10.CrossRefGoogle Scholar
  91. 91.
    William WN Jr, Papadimitrakopoulou V, Lee JJ, Mao L, Cohen EE, Lin HY, Gillenwater AM, Martin JW, Lingen MW, Boyle JO, Shin DM, Vigneswaran N, Shinn N, Heymach JV, Wistuba II, Tang X, Kim ES, Saintigny P, Blair EA, Meiller T, Gutkind JS, Myers J, El-Naggar A, Lippman SM. Erlotinib and the risk of oral cancer: the erlotinib prevention of oral cancer (EPOC) randomized clinical trial. JAMA Oncol. 2016;2(2):209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120(Pt 19):3327–35.PubMedCrossRefGoogle Scholar
  93. 93.
    Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.CrossRefGoogle Scholar
  94. 94.
    Souto GR, Caliari MV, Lins CE, de Aguiar MC, de Abreu MH, Mesquita RA. Tobacco use increase the number of aneuploid nuclei in the clinically healthy oral epithelium. J Oral Pathol Med. 2010;39(8):605–10.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Bremmer JF, Brakenhoff RH, Broeckaert MA, Belien JA, Leemans CR, Bloemena E, van der Waal I, Braakhuis BJ. Prognostic value of DNA ploidy status in patients with oral leukoplakia. Oral Oncol. 2011;47(10):956–60.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pierssens DDCG, Borgemeester MC, van der Heijden SJH, Peutz-Kootstra CJ, Ruland AM, Haesevoets AM, Kessler PAWH, Kremer B, Speel E-JM. Chromosome instability in tumor resection margins of primary OSCC is a predictor of local recurrence. Oral Oncol. 2017;66:14–21.PubMedCrossRefGoogle Scholar
  97. 97.
    Gildener-Leapman N, Ferris RL, Bauman JE. Promising systemic immunotherapies in head and neck squamous cell carcinoma. Oral Oncol. 2013;49(12):1089–96.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tan M, Myers JN, Agrawal N. Oral cavity and oropharyngeal squamous cell carcinoma genomics. Otolaryngol Clin North Am. 2013;46(4):545–66.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    van der Riet P, Nawroz H, Hruban RH, Corio R, Tokino K, Koch W, Sidransky D. Frequent loss of chromosome 9p21-22 early in head and neck cancer progression. Cancer Res. 1994;54(5):1156–8.PubMedGoogle Scholar
  100. 100.
    Mao L, Lee JS, Fan YH, Ro JY, Batsakis JG, Lippman S, Hittelman W, Hong WK. Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nat Med. 1996;2(6):682–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Rosin MP, Cheng X, Poh C, Lam WL, Huang Y, Lovas J, Berean K, Epstein JB, Priddy R, Le ND, Zhang L. Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin Cancer Res. 2000;6(2):357–62.Google Scholar
  102. 102.
    Johnson SD, Levingston C, Young MR. Premalignant oral lesion cells elicit increased cytokine production and activation of T-cells. Anticancer Res. 2016;36(7):3261–70.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Malumbres M. miRNAs and cancer: an epigenetics view. Mol Aspects Med. 2013;34(4):863–74.PubMedCrossRefGoogle Scholar
  104. 104.
    Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, Pintilie M, Jurisica I, Perez-Ordonez B, Gilbert R, Gullane P, Irish J, Kamel-Reid S. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet. 2009;18(24):4818–29.PubMedCrossRefGoogle Scholar
  105. 105.
    Jung HM, Phillips BL, Patel RS, Cohen DM, Jakymiw A, Kong WW, Cheng JQ, Chan EK. Keratinization-associated miR-7 and miR-21 regulate tumor suppressor reversion-inducing cysteine-rich protein with kazal motifs (RECK) in oral cancer. J Biol Chem. 2012;287(35):29261–72.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Harrandah AM, Fitzpatrick SG, Smith MH, Wang D, Cohen DM, Chan EK. MicroRNA-375 as a biomarker for malignant transformation in oral lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(6):743–752.e741.PubMedCrossRefGoogle Scholar
  107. 107.
    Harris T, Jimenez L, Kawachi N, Fan JB, Chen J, Belbin T, Ramnauth A, Loudig O, Keller CE, Smith R, Prystowsky MB, Schlecht NF, Segall JE, Childs G. Low-level expression of miR-375 correlates with poor outcome and metastasis while altering the invasive properties of head and neck squamous cell carcinomas. Am J Pathol. 2012;180(3):917–28.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hung KF, Liu CJ, Chiu PC, Lin JS, Chang KW, Shih WY, Kao SY, Tu HF. MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol. 2016;53:42–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges. Curr Biol. 2010;20(19):R858–61.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Clark MB, Mattick JS. Long noncoding RNAs in cell biology. Semin Cell Dev Biol. 2011;22(4):366–76.PubMedCrossRefGoogle Scholar
  111. 111.
    Zou AE, Ku J, Honda TK, Yu V, Kuo SZ, Zheng H, Xuan Y, Saad MA, Hinton A, Brumund KT, Lin JH, Wang-Rodriguez J, Ongkeko WM. Transcriptome sequencing uncovers novel long noncoding and small nucleolar RNAs dysregulated in head and neck squamous cell carcinoma. RNA. 2015;21(6):1122–34.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Nohata N, Abba MC, Gutkind JS. Unraveling the oral cancer lncRNAome: identification of novel lncRNAs associated with malignant progression and HPV infection. Oral Oncol. 2016;59:58–66.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Junttila MR, Evan GI. p53--a Jack of all trades but master of none. Nat Rev Cancer. 2009;9(11):821–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.PubMedCentralCrossRefPubMedGoogle Scholar
  115. 115.
    Dassonville O, Formento JL, Francoual M, Ramaioli A, Santini J, Schneider M, Demard F, Milano G. Expression of epidermal growth factor receptor and survival in upper aerodigestive tract cancer. J Clin Oncol. 1993;11(10):1873–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Bates T, Kennedy M, Diajil A, Goodson M, Thomson P, Doran E, Farrimond H, Thavaraj S, Sloan P, Kist R, Robinson M. Changes in epidermal growth factor receptor gene copy number during oral carcinogenesis. Cancer Epidemiol Biomarkers Prev. 2016;25(6):927–35.PubMedCrossRefGoogle Scholar
  117. 117.
    Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29.PubMedCrossRefGoogle Scholar
  118. 118.
    Gudigenavar A, Adhyaru P, Naik V. Tumor suppressor genes in oral cancer. Clin Cancer Investig J. 2015;4(6):697–702.CrossRefGoogle Scholar
  119. 119.
    Koole K, van Kempen PM, van Bockel LW, Smets T, van der Klooster Z, Dutman AC, Peeters T, Koole R, van Diest P, van Es RJ, Willems SM. FGFR4 is a potential predictive biomarker in oral and oropharyngeal squamous cell carcinoma. Pathobiology. 2015;82(6):280–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Koole K, van Kempen PM, Swartz JE, Peeters T, van Diest PJ, Koole R, van Es RJ, Willems SM. Fibroblast growth factor receptor 3 protein is overexpressed in oral and oropharyngeal squamous cell carcinoma. Cancer Med. 2016;5(2):275–84.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Knowles LM, Stabile LP, Egloff AM, Rothstein ME, Thomas SM, Gubish CT, Lerner EC, Seethala RR, Suzuki S, Quesnelle KM, Morgan S, Ferris RL, Grandis JR, Siegfried JM. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res. 2009;15(11):3740–50.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Rousseau A, Lim MS, Lin Z, Jordan RC. Frequent cyclin D1 gene amplification and protein overexpression in oral epithelial dysplasias. Oral Oncol. 2001;37(3):268–75.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Mishra R, Das BR. Cyclin D1 expression and its possible regulation in chewing tobacco mediated oral squamous cell carcinoma progression. Arch Oral Biol. 2009;54(10):917–23.PubMedCrossRefGoogle Scholar
  124. 124.
    Nasser W, Flechtenmacher C, Holzinger D, Hofele C, Bosch FX. Aberrant expression of p53, p16INK4a and Ki-67 as basic biomarker for malignant progression of oral leukoplakias. J Oral Pathol Med. 2011;40(8):629–35.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Izumchenko E, Sun K, Jones S, Brait M, Agrawal N, Koch W, McCord CL, Riley DR, Angiuoli SV, Velculescu VE, Jiang WW, Sidransky D. Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev Res (Phila). 2015;8(4):277–86.CrossRefGoogle Scholar
  126. 126.
    Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HM, Signori E, Honoki K, Georgakilas AG, Amin A, Helferich WG, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Keith WN, Bilsland A, Bhakta D, Halicka D, Fujii H, Aquilano K, Ashraf SS, Nowsheen S, Yang X, Choi BK, Kwon BS. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35(Suppl):S185–98.PubMedCrossRefGoogle Scholar
  127. 127.
    Dalley AJ, Abdul Majeed AA, Pitty LP, Major AG, Farah CS. LGR5 expression in oral epithelial dysplasia and oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119(4):436–440.e431.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Singhi AD, Westra WH. Comparison of human papillomavirus in situ hybridization and p16 immunohistochemistry in the detection of human papillomavirus-associated head and neck cancer based on a prospective clinical experience. Cancer. 2010;116(9):2166–73.PubMedGoogle Scholar
  129. 129.
    Pannone G, Rodolico V, Santoro A, Lo Muzio L, Franco R, Botti G, Aquino G, Pedicillo MC, Cagiano S, Campisi G, Rubini C, Papagerakis S, De Rosa G, Tornesello ML, Buonaguro FM, Staibano S, Bufo P. Evaluation of a combined triple method to detect causative HPV in oral and oropharyngeal squamous cell carcinomas: p16 Immunohistochemistry, Consensus PCR HPV-DNA, and In Situ Hybridization. Infect Agent Cancer. 2012;7:4.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Fregonesi PA, Teresa DB, Duarte RA, Neto CB, de Oliveira MR, Soares CP. p16(INK4A) immunohistochemical overexpression in premalignant and malignant oral lesions infected with human papillomavirus. J Histochem Cytochem. 2003;51(10):1291–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Seoane JM, Varela-Centelles PI, Ramirez JR, Cameselle-Teijeiro J, Romero MA, Aguirre JM. Heat shock proteins (HSP70 and HSP27) as markers of epithelial dysplasia in oral leukoplakia. Am J Dermatopathol. 2006;28(5):417–22.PubMedCrossRefGoogle Scholar
  132. 132.
    Camisasca DR, Honorato J, Bernardo V, da Silva LE, da Fonseca EC, de Faria PA, Dias FL, Lourenco Sde Q. Expression of Bcl-2 family proteins and associated clinicopathologic factors predict survival outcome in patients with oral squamous cell carcinoma. Oral Oncol. 2009;45(3):225–33.PubMedCrossRefGoogle Scholar
  133. 133.
    Zhang M, Li J, Wang L, Tian Z, Zhang P, Xu Q, Zhang C, Wei F, Chen W. Prognostic significance of p21, p27 and survivin protein expression in patients with oral squamous cell carcinoma. Oncol Lett. 2013;6(2):381–6.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Shay JW, Wright WE. The use of telomerized cells for tissue engineering. Nat Biotechnol. 2000;18(1):22–3. Scholar
  135. 135.
    Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6(8):611–22.PubMedCrossRefGoogle Scholar
  136. 136.
    Park YJ, Kim EK, Bae JY, Moon S, Kim J. Human telomerase reverse transcriptase (hTERT) promotes cancer invasion by modulating cathepsin D via early growth response (EGR)-1. Cancer Lett. 2016;370(2):222–31.PubMedCrossRefGoogle Scholar
  137. 137.
    Kim HR, Christensen R, Park NH, Sapp P, Kang MK, Park NH. Elevated expression of hTERT is associated with dysplastic cell transformation during human oral carcinogenesis in situ. Clin Cancer Res. 2001;7(10):3079–86.PubMedGoogle Scholar
  138. 138.
    Dorji T, Monti V, Fellegara G, Gabba S, Grazioli V, Repetti E, Marcialis C, Peluso S, Di Ruzza D, Neri F, Foschini MP. Gain of hTERC: a genetic marker of malignancy in oral potentially malignant lesions. Hum Pathol. 2015;46(9):1275–81.PubMedCrossRefGoogle Scholar
  139. 139.
    Patel MM, Parekh LJ, Jha FP, Sainger RN, Patel JB, Patel DD, Shah PM, Patel PS. Clinical usefulness of telomerase activation and telomere length in head and neck cancer. Head Neck. 2002;24(12):1060–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Aida J, Izumo T, Shimomura N, Nakamura K, Ishikawa N, Matsuura M, Poon SS, Fujiwara M, Sawabe M, Arai T, Takubo K. Telomere lengths in the oral epithelia with and without carcinoma. Eur J Cancer. 2010;46(2):430–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Zhou CX, Gao Y, Johnson NW, Gao J. Immunoexpression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in the metastasis of squamous cell carcinoma of the human tongue. Aust Dent J. 2010;55(4):385–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Ghallab NA, Shaker OG. Serum and salivary levels of chemerin and MMP-9 in oral squamous cell carcinoma and oral premalignant lesions. Clin Oral Investig. 2017;21:937.PubMedCrossRefGoogle Scholar
  143. 143.
    Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the immune system, and cancer. Front Immunol. 2012;3:283.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Feng JQ, Mi JG, Wu L, Ma LW, Shi LJ, Yang X, Liu W, Zhang CP, Zhou ZT. Expression of podoplanin and ABCG2 in oral erythroplakia correlate with oral cancer development. Oral Oncol. 2012;48(9):848–52.CrossRefGoogle Scholar
  145. 145.
    Habiba U, Kitamura T, Yanagawa-Matsuda A, Higashino F, Hida K, Totsuka Y, Shindoh M. HuR and podoplanin expression is associated with a high risk of malignant transformation in patients with oral preneoplastic lesions. Oncol Lett. 2016;12(5):3199–207.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Nguyen CT, Okamura T, Morita KI, Yamaguchi S, Harada H, Miki Y, Izumo T, Kayamori K, Yamaguchi A, Sakamoto K. LAMC2 is a predictive marker for the malignant progression of leukoplakia. J Oral Pathol Med. 2017;46:223.CrossRefGoogle Scholar
  147. 147.
    Kawasaki G, Kato Y, Mizuno A. Cathepsin expression in oral squamous cell carcinoma: relationship with clinicopathologic factors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93(4):446–54.PubMedCrossRefGoogle Scholar
  148. 148.
    Strauss DC, Thomas JM. Transmission of donor melanoma by organ transplantation. Lancet Oncol. 2010;11(8):790–6.PubMedCrossRefGoogle Scholar
  149. 149.
    Costa NL, Valadares MC, Souza PP, Mendonca EF, Oliveira JC, Silva TA, Batista AC. Tumor-associated macrophages and the profile of inflammatory cytokines in oral squamous cell carcinoma. Oral Oncol. 2013;49(3):216–23.PubMedCrossRefGoogle Scholar
  150. 150.
    Mori K, Haraguchi S, Hiori M, Shimada J, Ohmori Y. Tumor-associated macrophages in oral premalignant lesions coexpress CD163 and STAT1 in a Th1-dominated microenvironment. BMC Cancer. 2015;15:573.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Lin L, Wang J, Liu D, Liu S, Xu H, Ji N, Zhou M, Zeng X, Zhang D, Li J, Chen Q. Interleukin-37 expression and its potential role in oral leukoplakia and oral squamous cell carcinoma. Sci Rep. 2016;6:26757.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Ohman J, Mowjood R, Larsson L, Kovacs A, Magnusson B, Kjeller G, Jontell M, Hasseus B. Presence of CD3-positive T-cells in oral premalignant leukoplakia indicates prevention of cancer transformation. Anticancer Res. 2015;35(1):311–7.PubMedGoogle Scholar
  153. 153.
    Ohman J, Magnusson B, Telemo E, Jontell M, Hasseus B. Langerhans cells and T cells sense cell dysplasia in oral leukoplakias and oral squamous cell carcinomas--evidence for immunosurveillance. Scand J Immunol. 2012;76(1):39–48.PubMedCrossRefGoogle Scholar
  154. 154.
    Malaspina TS, Gasparoto TH, Costa MR, de Melo EF Jr, Ikoma MR, Damante JH, Cavassani KA, Garlet GP, da Silva JS, Campanelli AP. Enhanced programmed death 1 (PD-1) and PD-1 ligand (PD-L1) expression in patients with actinic cheilitis and oral squamous cell carcinoma. Cancer Immunol Immunother. 2011;60(7):965–74.PubMedCrossRefGoogle Scholar
  155. 155.
    Troeltzsch M, Woodlock T, Pianka A, Otto S, Troeltzsch M, Ehrenfeld M, Knosel T. Is there evidence for the presence and relevance of the PD-1/PD-L1 pathway in oral squamous cell carcinoma? Hints from an immunohistochemical study. J Oral Maxillofac Surg. 2017;75:969.PubMedCrossRefGoogle Scholar
  156. 156.
    Peltomaki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet. 2001;10(7):735–40.PubMedCrossRefGoogle Scholar
  157. 157.
    Pimenta FJ, Pinheiro MD, Gomez RS. Expression of hMSH2 protein of the human DNA mismatch repair system in oral lichen planus. Int J Med Sci. 2004;1(3):146–51.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Jessri M, Dalley AJ, Farah CS. MutSalpha and MutLalpha immunoexpression analysis in diagnostic grading of oral epithelial dysplasia and squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119(1):74–82.PubMedCrossRefGoogle Scholar
  159. 159.
    Jessri M, Dalley AJ, Farah CS. hMSH6: a potential diagnostic marker for oral carcinoma in situ. J Clin Pathol. 2015;68(1):86–90.PubMedCrossRefGoogle Scholar
  160. 160.
    Harris L, Davenport J, Neale G, Goorha R. The mitotic checkpoint gene BubR1 has two distinct functions in mitosis. Exp Cell Res. 2005;308(1):85–100.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Rizzardi C, Torelli L, Barresi E, Schneider M, Canzonieri V, Biasotto M, Di Lenarda R, Melato M. BUBR1 expression in oral squamous cell carcinoma and its relationship to tumor stage and survival. Head Neck. 2011;33(5):727–33.PubMedCrossRefGoogle Scholar
  162. 162.
    Chou CK, Wu CY, Chen JY, Ng MC, Wang HM, Chen JH, Yuan SS, Tsai EM, Chang JG, Chiu CC. BubR1 acts as a promoter in cellular motility of human oral squamous cancer cells through regulating MMP-2 and MMP-9. Int J Mol Sci. 2015;16(7):15104–17.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Pickering CR, Zhang J, Yoo SY, Bengtsson L, Moorthy S, Neskey DM, Zhao M, Ortega Alves MV, Chang K, Drummond J, Cortez E, Xie TX, Zhang D, Chung W, Issa JP, Zweidler-McKay PA, Wu X, El-Naggar AK, Weinstein JN, Wang J, Muzny DM, Gibbs RA, Wheeler DA, Myers JN, Frederick MJ. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 2013;3(7):770–81.PubMedCrossRefGoogle Scholar
  164. 164.
    Zanaruddin SN, Yee PS, Hor SY, Kong YH, Ghani WM, Mustafa WM, Zain RB, Prime SS, Rahman ZA, Cheong SC. Common oncogenic mutations are infrequent in oral squamous cell carcinoma of Asian origin. PLoS One. 2013;8(11):e80229.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Peter A. Brennan, Tom Aldridge, Raghav C. Dwivedi, Rehan Kazi 2019

Authors and Affiliations

  • Camile S. Farah
    • 1
    Email author
  • Kate Shearston
    • 1
  • Amanda Phoon Nguyen
    • 1
  • Omar Kujan
    • 1
  1. 1.Australian Centre for Oral Oncology Research and Education, UWA Dental SchoolUniversity of Western AustraliaPerthAustralia

Personalised recommendations