Skip to main content

The Molecular Basis of Carcinogenesis

  • Chapter
  • First Online:
Premalignant Conditions of the Oral Cavity

Abstract

In this chapter, we will discuss the molecular basis of carcinogenesis. First understand, and then treat! Better treatment options for cancer and preventive approaches for potentially malignant lesions can be achieved only if the pathobiology of the disease is well understood. We have witnessed a shift in the therapeutic approaches to cancer, from “universal” therapies applied to several different tumour types to tailored and personalized treatment. Each tumour/lesion is unique. As the understanding of malignant transformation and carcinogenesis requires knowledge of molecular and tumour biology, we aim to discuss carcinogenesis initially in a broader context before discussing the effects of carcinogens on the aetiology of potentially malignant oral lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vineis P, Schatzkin A, Potter JD. Models of carcinogenesis: an overview. Carcinogenesis. 2010;31:1703–9.

    Article  CAS  Google Scholar 

  2. Sonnenschein C, Soto AM. Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol. 2008;18:372–7.

    Article  CAS  Google Scholar 

  3. Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6:963–8.

    Article  CAS  Google Scholar 

  4. Sottoriva A, Barnes CP, Graham TA. Catch my drift? Making sense of genomic intra-tumour heterogeneity. Biochim Biophys Acta Rev Cancer. 2017;1867:95. pii: S0304-419X(17)30001-X.

    Article  CAS  Google Scholar 

  5. Braakhuis BJ, Leemans CR, Brakenhoff RH. A genetic progressionmodel of oral cancer: current evidence and clinical implications. J Oral Pathol Med. 2004;33:317–22.

    Article  CAS  Google Scholar 

  6. Cross WC, Graham TA, Wright NA. New paradigms in clonal evolution: punctuated equilibrium in cancer. J Pathol. 2016;240:126–36.

    Article  Google Scholar 

  7. Wood HM, Conway C, Daly C, et al. The clonal relationships between pre-cancer and cancer revealed by ultra-deep sequencing. J Pathol. 2015a;237:296–306.

    Article  CAS  Google Scholar 

  8. Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. 4th ed. Garland Science: New York, NY; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21054/.

    Google Scholar 

  9. Ling H, Vincent K, Pichler M, et al. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene. 2015;34:5003–11.

    Article  CAS  Google Scholar 

  10. Pichler M, Calin GA. MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. Br J Cancer. 2015;113:569–73.

    Article  CAS  Google Scholar 

  11. Gomes CC, de Sousa SF, Calin GA, Gomez RS. The emerging role of long noncoding RNAs in oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:235–41.

    Article  Google Scholar 

  12. Gomes CC, Gomez RS. MicroRNAand oral cancer: future perspectives. Oral Oncol. 2008;44:910–4.

    Article  CAS  Google Scholar 

  13. Cervigne NK, Reis PP, Machado J, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet. 2009a;18:4818–29.

    Article  CAS  Google Scholar 

  14. Brito JA, Gomes CC, Guimarães AL, Campos K, Gomez RS. Relationship between microRNA expression levels and histopathological features of dysplasia in oral leukoplakia. J Oral Pathol Med. 2014a;43:211–6.

    Article  CAS  Google Scholar 

  15. Gibb EA, Enfield KS, Stewart GL, et al. Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions. Oral Oncol. 2011;47:1055–61.

    Article  CAS  Google Scholar 

  16. The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82. https://doi.org/10.1038/nature14129.

    Article  CAS  PubMed Central  Google Scholar 

  17. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  Google Scholar 

  18. Izumchenko E, Sun K, Jones S, et al. Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev Res. 2015;8:277–86.

    Article  CAS  Google Scholar 

  19. Stricker T, Kumar V. Neoplasia. In: Kumar V, Abbas AK, Aster JC, editors. Robbins basic pathology. Amsterdam: Elsevier; 2013. 928 p.

    Google Scholar 

  20. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11:558–72.

    Article  CAS  Google Scholar 

  21. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

    Article  CAS  Google Scholar 

  22. Bunz F. Oncogenes. In: Bunz F, editor. Principles of cancer genetics. Dordrecht: Springer; 2008a. p. 49–74.

    Chapter  Google Scholar 

  23. Bunz F. Tumor suppressor genes. In: Bunz F, editor. Principles of cancer genetics. Dordrecht: Springer; 2008b. p. 77–123.

    Chapter  Google Scholar 

  24. Chow AY. Cell cycle control by oncogenes and tumor suppressors: driving the transformation of normal cells into cancerous cells. Nat Educ. 2010;3:7.

    Google Scholar 

  25. Bunz F. Genetic instability and cancer. In: Bunz F, editor. Principles of cancer genetics. Dordrecht: Springer; 2008c. p. 125–70.

    Chapter  Google Scholar 

  26. Giam M, Rancati G. Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 2015;10:3.

    Article  Google Scholar 

  27. Zhang L, Poh CF, Williams M, et al. Loss of heterozygosity (LOH) profiles--validated risk predictors for progression to oral cancer. Cancer Prev Res. 2012;5:1081–9.

    Article  Google Scholar 

  28. Hemmer J, Kreidler J. Flow cytometric DNA ploidy analysis of squamous cell carcinoma of the oral cavity. Comparison with clinical staging and histologic grading. Cancer. 1990;66:317–20.

    Article  CAS  Google Scholar 

  29. Giaretti W, Monteghirfo S, Pentenero M, Gandolfo S, Malacarne D, Castagnola P. Chromosomal instability, DNA index, dysplasia, and subsite in oral premalignancy as intermediate endpoints of risk of cancer. Cancer Epidemiol Biomarkers Prev. 2013;22:1133–41.

    Article  CAS  Google Scholar 

  30. Sperandio M, Brown AL, Lock C, et al. Predictive value of dysplasia grading and DNA ploidy in malignant transformation of oral potentially malignant disorders. Cancer Prev Res. 2013;6:822–31.

    Article  CAS  Google Scholar 

  31. Rubio Bueno P, Naval Gias L, García Delgado R, Domingo Cebollada J, Díaz González FJ. Tumor DNA content as a prognostic indicator in squamous cell carcinoma of the oral cavity and tongue base. Head Neck. 1998;20:232–9.

    Article  CAS  Google Scholar 

  32. Brouns ER, Bloemena E, Belien JA, Broeckaert MA, Aartman IH, van der Waal I. DNA ploidy measurement in oral leukoplakia: different results between flow and image cytometry. Oral Oncol. 2012;48:636–40.

    Article  CAS  Google Scholar 

  33. Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science. 2001;291(5507):1284–9.

    Article  CAS  Google Scholar 

  34. Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene. 2008;27:6398–406.

    Article  CAS  Google Scholar 

  35. Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol. 2013;23:620–33.

    Article  Google Scholar 

  36. Beatty GL, Gladney WL. Immuneescapemechanisms as a guide for cancerimmunotherapy. Clin Cancer Res. 2015;21:687–92.

    Article  CAS  Google Scholar 

  37. Economopoulou P, Agelaki S, Perisanidis C, Giotakis EI, Psyrri A. The promise of immunotherapy in head and neck squamous cell carcinoma. Ann Oncol. 2016;27:1675–85.

    Article  CAS  Google Scholar 

  38. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22:9–20.

    Article  CAS  Google Scholar 

  39. Arantes LM, de Carvalho AC, Melendez ME, Carvalho AL, Goloni-Bertollo EM. Methylation as a biomarker for head and neck cancer. Oral Oncol. 2014;50:587–92.

    Article  CAS  Google Scholar 

  40. Smith IM, Mydlarz WK, Mithani SK, Califano JA. DNA global hypomethylation in squamous cell head and neck cancer associated with smoking, alcohol consumption and stage. Int J Cancer. 2007;121:1724–8.

    Article  CAS  Google Scholar 

  41. Papillon-Cavanagh S, Lu C, Gayden T, et al. Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet. 2017;49:180–5.

    Article  CAS  Google Scholar 

  42. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  CAS  Google Scholar 

  43. Gomes CC, Fonseca-Silva T, Galvão CF, Friedman E, De Marco L, Gomez RS. Inter- and intra-lesional molecular heterogeneity of oral leukoplakia. Oral Oncol. 2015;51:178–81.

    Article  CAS  Google Scholar 

  44. Mroz EA, Tward AD, Pickering CR, Myers JN, Ferris RL, Rocco JW. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer. 2013;119:3034–42.

    Article  Google Scholar 

  45. Burrell RA, Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol Oncol. 2014;8:1095–111.

    Article  CAS  Google Scholar 

  46. Kumar M, Nanavati R, Modi TG, Dobariya C. Oral cancer: etiology and risk factors: a review. J Can Res Ther. 2016;12:458–63.

    Article  CAS  Google Scholar 

  47. Arduino PG, Bagan J, El-Naggar A, Carrozo M. Urban legends series: oral leukoplakia. Oral Dis. 2013;19(7):642–59.

    Article  CAS  Google Scholar 

  48. Lodi G, Sardella A, Bez C, Demarosi F, Carrasi A. Interventions for treating oral leukoplakia. Cochrane Database Syst Rev. 2006;4:CD001829.

    Google Scholar 

  49. Yalcin E, de la Montes S. Tobacco nitrosamine as culprits in disease: mechanisms reviewed. J Physiol Biochem. 2016;72:107–20.

    Article  CAS  Google Scholar 

  50. Alexandrov LB, Ju YS, Haase K, Loo PV, et al. Mutational signature associated with tobacco smoking in human cancer. Science. 2016;354:618–22.

    Article  CAS  Google Scholar 

  51. Grigoryeva ES, Kokova DA, Gratchev AN, Cherdyntsev ES, Buldakov MA, Kzhyshkowska JG, Cherdyntseva NV. Smoking-related DNA adducts as potential diagnostic markers of lung cancer: new perspectives. Exp Oncol. 2015;37(1):5–12.

    CAS  PubMed  Google Scholar 

  52. Warnakulasuriya KA, Ralhan R. Clinical, pathological, cellular and molecular lesions caused by oral smokeless tobacco--a review. J Oral Pathol Med. 2007;36(2):63–77.

    Article  CAS  Google Scholar 

  53. Tilakaratne WM, Ekanayaka RP, Warnakulasuriya S. Oral submucous fibrosis: a historical perspective and a review on etiology and pathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):178–91.

    Article  Google Scholar 

  54. Chattopadhyay A, Ray JG. Molecular pathology of malignant transformation of oral submucous fibrosis. J Environ Pathol Toxicol Oncol. 2016;35(3):193–205.

    Article  Google Scholar 

  55. Maserejian NN. Prospective study of alcohol consumption and risk of oral premalignant lesions in men. Cancer Epidemiol Biomarkers Prev. 2006;15:774–81.

    Article  CAS  Google Scholar 

  56. Setshedi M, Wands JR, de la Monte SM. Acetaldehyde adducts in alcoholic liver disease. Oxid Med Cell Longev. 2010;3:178–85.

    Article  Google Scholar 

  57. Zaravinos A. An updated overview of HPV-associated head and neck carcinomas. Oncotarget. 2014;5:3956–68.

    Article  Google Scholar 

  58. Ying J, Wang F, Lin J. Human papillomavirus 16 as a risk factor for oral leukoplakia: a meta-analysis. Meta Gene. 2017b;12:43–6.

    Article  Google Scholar 

  59. Fakhry C, Psyrri A, Chaturvedi A. HPV and head and neck cancers: sate-of-the-science. Oral Oncol. 2014;50:353–5.

    Article  Google Scholar 

  60. Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29:4294–301.

    Article  Google Scholar 

  61. Lingen MW, Xiao W, Schmitt A, Jiang B, Pickard R, Kreinbrink P, Perez-Ordonez B, Jordan RC, Gillison ML. Low etiologic fraction for high-risk human papillomavirus in oral cavity squamous cell carcinomas. Oral Oncol. 2013;49:1–8.

    Article  Google Scholar 

  62. Bakri MM, Hussaini HM, Holmes AR, Cannon RD, Rich AM. Revisiting the association between candidal infection and carcinoma, particularly oral squamous cell carcinoma. J Oral Microbiol. 2010;2:5780.

    Article  Google Scholar 

  63. Gholizadeh P, Eslami H, Yousefi M, Asgharzadeh M, Aghazadeh M, Kafil HS. Role of oral microbiome on oral cancers, a review. Biomed Pharmacother. 2016;84:552–8.

    Article  CAS  Google Scholar 

  64. Nishisgori C. Current concept of photocarcinogenesis. Phochem Photobiol Sci. 2015;14:1713–21.

    Article  CAS  Google Scholar 

  65. Park JM, Kang TH. Transcriptional and posttranslational regulation of nucleotide excision repair: the Guardian of the Genome against Ultraviolet Radiation. Int J Mol Sci. 2016;17:1840.

    Article  Google Scholar 

  66. Brunotto M, Zarate AM, Bono A, Barra JL, Berra S. Risk genes n head and neck cancer: a systematic review and meta-analysis of last 5 years. Oral Oncol. 2014;50(3):178–88.

    Article  CAS  Google Scholar 

  67. Siebers TJH, Bergshoeff VE, Otte-Höller I, Kremer B, Speel EJM, van der Laak JAWM, Merkx MAW, Slootweg PJ. Chromosome instability predicts the progression of premalignant oral lesions. Oral Oncol. 2013;49:1121–8.

    Article  CAS  Google Scholar 

  68. Shridhar K, Walia GK, Aggarwal A, Gulati S, Geetha AV, Prabhakaran D, Dhillon PK, Rajaraman P. DNA methylation markers for oral pre-cancer progression: a critical review. Oral Oncol. 2016b;53:1–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Cavalieri Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Peter A. Brennan, Tom Aldridge, Raghav C. Dwivedi, Rehan Kazi

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, C.C., Diniz, M.G., Gomez, R.S. (2019). The Molecular Basis of Carcinogenesis. In: Brennan, P., Aldridge, T., Dwivedi, R. (eds) Premalignant Conditions of the Oral Cavity. Head and Neck Cancer Clinics. Springer, Singapore. https://doi.org/10.1007/978-981-13-2931-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2931-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2930-2

  • Online ISBN: 978-981-13-2931-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics