Skip to main content

Transcriptomics

  • Chapter
  • First Online:
Omics Approaches, Technologies And Applications

Abstract

Transcriptomics can be considered as Integromics, whereby combining data from various omic branches results in crisp information. Transcriptomics provides the most informative base to start a research work, and with advent of new high-throughput techniques, it has become very easy and fast to generate a pool of data and information. Transcriptome constitutes all transcripts present in a cell including mRNA, miRNA, noncoding RNAs, and small RNAs. Transcriptomics identifies the quantity of RNA and transcriptional structure and quantifies the differential expression levels of transcripts spatially and temporally during various developmental stages and under varying physiological conditions. It gives the information on diversity, noncoding RNAs, and the arrangement of transcriptional units in coding regions. Transcriptomic analysis began with a primitive technique called EST, i.e., expressed sequence tags, followed by another technique called SAGE, i.e., serial analysis of gene expression, based on Sanger sequencing. EST and SAGE were laborious and determined a small set of transcripts in a random fashion, yielding half information on transcriptome. The 1990s marks the revolutionary decade in transcriptomics with the introduction of technological innovation of contemporary technique called microarray. Microarray analyzes large mammalian transcriptome rapidly and has been useful in drug development and clinical research by analyzing thousands of genes from multiple samples. The major drawback of the technique is the analysis of only known sequences and hence cannot detect novel transcripts. The latest in transcriptome analysis is RNA-Seq based on deep sequencing technology which can record up to 109 transcripts. It identifies the gene and the temporal activity of genes in a genome. In situ RNA-Seq is an advanced form which gives an overview of an individual cell in a fixed tissue. RNA-Seq is thus an advanced technique providing detailed information of complex transcriptome. Further, the chapter discusses the advantages and limitations of transcriptome analysis tools.

Similarly, the information of the expressed genes from a microbial community is termed as metatranscriptomics. Metatranscriptomics provides functional profile of microbiome under varying physiological conditions. The data generated is useful in enrichment analysis and phylogenetic analysis of microbes. Several bioinformatic pipelines are now designed or are in process for analysis of metatranscriptome dataset. Metatranscriptomics will provide information on microbial flora in human beings which can be exploited for designing targeted therapy for microbial dysbiosis. The last section of the chapter discusses the application of transcriptomics particularly in diagnosis and profiling a disease. Another application includes identifying environment-responsive genes or pathways, host-pathogen interactions, and annotating gene functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., & Narasimhan, G. (2016). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evolutionary Bioinformatics, 12(S1), 5–16.

    Google Scholar 

  • Araujo, F. A., Barh, D., Silva, A., Guimaraes, L., & Ramos, R. T. J. (2018). GO FEAT: A rapid web-based functional annotation tool for genomic and transcriptomic data. Scientific Reports, 8, 1794.

    Article  Google Scholar 

  • Bikel, S., Valdez-Lara, A., Cornejo-Granados, F., Rico, K., Canizales-Quinteros, S., Soberón, X., Pozo-Yauner, L. D., & Ochoa-Leyva, A. (2015). Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: Towards a systems-level understanding of human microbiome. Computational and Structural Biotechnology Journal, 13, 390–401.

    Article  CAS  Google Scholar 

  • Byron, S. A., Van Keuren-Jensen, K. R., Engelthaler, D. M., Carpten, J. D., & Craig, D. W. (2016). Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nature Reviews. Genetics, 17, 257–271.

    Article  CAS  Google Scholar 

  • Cai, Z., Wang, L., Song, X., Tagore, S., Li, X., Wang, H., et al. (2018). Adaptive transcriptome profiling of subterranean Zokor, Myospalax baileyi, to high- altitude stresses in Tibet. Scientific Reports, 8, 4671.

    Article  Google Scholar 

  • Czypionka, T., Krugman, T., Altmuller, J., Blaustein, L., Steinfartz, S., Templeton, A. R., & Nolte, A. W. (2015). Ecological transcriptomics – A non-lethal sampling approach for endangered fire salamanders. Methods in Ecology and Evolution, 6, 1417–1425.

    Article  Google Scholar 

  • Derome, N., Duchesne, P., & Bernatchez, L. (2006). Parallelism in gene transcription among sympatric lake whitefish ecotypes (Coregonus clupeaformis Mitchill). Molecular Ecology, 15, 1239–1250.

    Article  CAS  Google Scholar 

  • Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., et al. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature, 412, 822–826.

    Article  CAS  Google Scholar 

  • DurmuÅŸ, S., Cakir, T., Ozgur, A., & Guthke, R. (2015). A review on computational systems biology of pathogen-host interactions. Frontiers in Microbiology, 6, 235.

    PubMed  PubMed Central  Google Scholar 

  • Eng, C. H. L., Shah, S., Thomassie, J., & Cai, L. (2017). Profiling the transcriptome with RNA SPOTs. Nature Methods, 14(12), 1153–1155.

    Article  CAS  Google Scholar 

  • Garcia-Sanchez, S., Aubert, S., Iraqui, I., Janbon, G., Ghigo, J. M., & d’Enfert, C. (2004). Candida albicans biofilms: A developmental state associated with specific and stable gene expression patterns. Eukaryotic Cell, 3, 536–545.

    Article  CAS  Google Scholar 

  • Garg, R., Shankar, R., Thakkar, B., Kudapa, H., Krishnamurthy, L., Mantri, N., et al. (2016). Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Scientific Reports, 6, 19228.

    Article  CAS  Google Scholar 

  • Gilbert, J. A., & Hughes, M. (2011). Gene expression profiling: metatranscriptomics. Methods in Molecular Biology, 733, 195–205.

    Article  CAS  Google Scholar 

  • Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286, 531–537.

    Article  CAS  Google Scholar 

  • Govindarajan, R., Duraiyan, J., & Palanisamy, M. (2012). Microarray and its applications. Journal of Pharmacy and Bioallied Sciences, 4(6), 310–312.

    Article  Google Scholar 

  • Hobbs, M., Pavasovic, A., King, A. G., Prentis, P. J., Eldridge, M. D., Chen, Z., et al. (2014). A transcriptome resource for the koala (Phascolarctos cinereus): Insights into koala retrovirus transcription and sequence diversity. BMC Genomics, 15, 786.

    Article  Google Scholar 

  • Hoheisel, J. D. (2006). Microarray technology: Beyond transcript profiling and genotype analysis. Nature Reviews, 7, 200–210.

    CAS  PubMed  Google Scholar 

  • Howe, G. T., Yu, J., Knaus, B., Cronn, R., Kolpak, S., Dolan, P., et al. (2013). A SNP resource for Douglas-fir: De novo transcriptome assembly and SNP detection and validation. BMC Genomics, 14, 137.

    Article  CAS  Google Scholar 

  • Hrdlickova, R., Toloue, M., & Tian, B. (2017). RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA, 8(1), e1364.

    Article  Google Scholar 

  • Jiang, Y., Xiong, X., Danska, J., & Parkinson, J. (2016). Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome specific functionality. Microbiome, 4, 2.

    Article  Google Scholar 

  • Kanter, I., & Kalisky, T. (2015). Single cell transcriptomics: Methods and applications. Frontiers in Oncology, 5, 53.

    Article  Google Scholar 

  • Li, B., & Dewey, C. N. (2011). Rsem: Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323.

    Article  CAS  Google Scholar 

  • Lin, Z., Chen, M., Dong, X., Zheng, X., Huang, H., Xu, X., & Chen, J. (2017). Transcriptome profiling of Galaxea fascicularis and its endosymbiont Symbiodinium reveals chronic eutrophication tolerance pathways and metabolic mutualism between partners. Scientific Reports, 7, 42100.

    Article  CAS  Google Scholar 

  • Lowe, R., Shirley, N., Bleackley, M., Dolan, S., & Shafee, T. (2017). Transcriptomics technologies. Plos Computational Biology, 13, e1005457.

    Article  Google Scholar 

  • Macgregor, P. F., & Squire, J. A. (2002). Application of microarrays to the analysis of gene expression in cancer. Clinical Chemistry, 48(8), 1170–1177.

    CAS  PubMed  Google Scholar 

  • McGrath, L. L., Vollmer, S. V., Kaluziak, S. T., & Ayers, J. (2016). De novo transcriptome assembly for the lobster Homarus americanus and characterization of differential gene expression across nervous system tissues. BMC Genomics, 17, 63.

    Article  Google Scholar 

  • Moncada, R., Chiodin, M., Devlin, J. C., Baron, M., Hajdu, C. H., Simeone, D., & Yanai, I. (2018 Jan 1). Building a tumor atlas: integrating single-cell RNA-Seq data with spatial transcriptomics in pancreatic ductal adenocarcinoma. bioRxiv, 254375.

    Google Scholar 

  • Moreno, J. C., Pauws, E., van Kampen, A. H., Jedlicková, M., de Vijlder, J. J., & Ris-Stalpers, C. (2001). Cloning of tissue-specific genes using SAGE and a novel computational substraction approach. Genomic, 75, 70–76.

    Article  CAS  Google Scholar 

  • Salem, M., Paneru, B., Al-Tobasei, R., Abdouni, F., Thorgaard, G. H., Rexroad, C. E., & Yao, J. (2015). Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout. PLoS One, 10(3), e0121778.

    Article  Google Scholar 

  • Sun, M., Li, Y. T., Liu, Y., Lee, S. C., & Wang, L. (2015). Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense. Scientific Reports, 6, 19405.

    Article  Google Scholar 

  • Velculescu, V. E., Zhang, L., Vogelstein, B., & Kinzler, K. W. (1995). Serial analysis of gene expression. Science, 270(5235), 484–487.

    Article  CAS  Google Scholar 

  • Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews. Genetics, 10(1), 57–63.

    Article  CAS  Google Scholar 

  • Westermann, A. J., Gorski, S. A., & Vogel, J. (2012). Dual RNA-seq of pathogen and host. Nature Reviews. Microbiology, 10, 618–630.

    Article  CAS  Google Scholar 

  • Westreich, S. T., et al. (2016). SAMSA: A comprehensive metatranscriptome analysis pipeline. BMC Bioinformatics, 17(1), 399.

    Article  Google Scholar 

  • Westreich, S. T., Treiber, M. L., Mills, D. A., Korf, I., & Lemay, D. G. (2018). SAMSA2: A standalone metatranscriptome analysis pipeline. BMC Bioinformatics, 19(1), 175.

    Google Scholar 

  • Wolf, J. B. W. (2013). Principles of transcriptome analysis and gene expression quantification: An RNA-seq tutorial. Molecular Ecology Resources, 13, 559–572.

    Article  CAS  Google Scholar 

  • Yamamato, M., Wakatsuki, T., Hada, A., & Ryo, A. (2001). Use of serial analysis of gene expression (SAGE) technology. Journal of Immunological Methods, 250, 45–66.

    Article  Google Scholar 

  • Yee, J. C., Gerdtzen, Z. P., & Hu, W. S. (2008). Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Biotechnology and Bioengineering, 102, 246–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotika Rajawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajawat, J. (2018). Transcriptomics. In: Arivaradarajan, P., Misra, G. (eds) Omics Approaches, Technologies And Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-2925-8_3

Download citation

Publish with us

Policies and ethics