Skip to main content

Necklace-Shaped Dimethylsiloxane Polymers Bearing Polyhedral Oligomeric Silsesquioxane Cages as a New Type of Organic–Inorganic Hybrid

  • Chapter
  • First Online:
New Polymeric Materials Based on Element-Blocks
  • 621 Accesses

Abstract

A series of necklace-shaped alternating siloxane copolymers that consisted of a bifunctional polyhedral oligomeric silsesquioxane (POSS) cage and flexible linear dimethyloligosiloxane (DMS) chain segment have been synthesized from bifunctional POSS molecules by two different synthetic methodologies, polycon-densation and ring-opening polymerization. Necklace-shaped POSS-DMS polymers with three different chain arrangements, “constant chain,” “random chain,” and “alternating modulated chain,” have been synthesized. The necklace-shaped POSS-DMS polymers gave transparent thermoplastic and thermosetting plastics with high heat resistance upon cross-linking at the end of the polymers. The controllable structural diversity of these polymers allows control of their physical properties such as flexibility and glass transition temperature. These necklace-shaped polymers consisting of bulky functional inorganic units and alternately connected short soft chains will pave the way to inorganic soft materials, which are novel inorganic materials that can be handled like an organic polymer possessing solubility, plasticity, or entropic elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chujo Y, Tanaka K (2015) New polymeric materials based on element-blocks. Bull Chem Soc Jpn 88:633–643. https://doi.org/10.1246/bcsj.20150081

    Article  CAS  Google Scholar 

  2. Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002

    Article  CAS  Google Scholar 

  3. Han S-Y, Wang X-M, Shao Y, Guo Q-Y, Li Y, Zhang W-B (2016) Janus POSS based on mixed [2:6] octakis-adduct regioisomers. Chem A Eur J 22:6397–6403. https://doi.org/10.1002/chem.201600579

    Article  CAS  Google Scholar 

  4. Li G, Charles UP (2005) Polyhedral oligomeric silsesquioxane (POSS) polymers, copolymers, and resin nanocomposites. Macromol Contain Met Met Elem Gr IVA Polym 4:79–131. https://doi.org/10.1002/0471712566.ch5

    Chapter  Google Scholar 

  5. Laine RM, Roll MF (2011) Polyhedral phenylsilsesquioxanes. Macromolecules 44:1073–1109. https://doi.org/10.1021/ma102360t

    Article  CAS  Google Scholar 

  6. Araki H, Naka K (2012) Syntheses and properties of star- and dumbbell-shaped POSS derivatives containing isobutyl groups. J Polym Sci Part A 50:4170–4181

    Google Scholar 

  7. Zhang W, Camino G, Yang R (2016) Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Prog Polym Sci 67:77–125. https://doi.org/10.1016/j.progpolymsci.2016.09.011

    Article  CAS  Google Scholar 

  8. Katsuta N, Yoshimatsu M, Komori K, Natsuaki T, Suwa K, Sakai K, Matsuo T, Ohba T, Uemura S, Watanabe S, Kunitake M (2017) Necklace-shaped dimethylsiloxane polymers bearing polyhedral oligomeric silsesquioxane cages with alternating length chains. Polym (United Kingdom) 127:8–14. https://doi.org/10.1016/j.polymer.2017.08.049

    Article  CAS  Google Scholar 

  9. Wang J, Sun J, Zhou J, Jin K, Fang Q (2017) Fluorinated and thermo-cross-linked polyhedral oligomeric silsesquioxanes: new organic–inorganic hybrid materials for high-performance dielectric application. ACS Appl Mater Interfaces 9:12782–12790. https://doi.org/10.1021/acsami.7b01415

    Article  CAS  PubMed  Google Scholar 

  10. Ghanbari H, Cousins BG, Seifalian AM (2011) A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 32:1032–1046. https://doi.org/10.1002/marc.201100126

    Article  CAS  PubMed  Google Scholar 

  11. Jeon JH, Tanaka K, Chujo Y (2013) Rational design of polyhedral oligomeric silsesquioxane fillers for simultaneous improvements of thermomechanical properties and lowering refractive indices of polymer films. J Polym Sci A Polym Chem 51:3583–3589. https://doi.org/10.1002/pola.26757

    Article  CAS  Google Scholar 

  12. Tsukada S, Sekiguchi Y, Takai S, Abe Y, Gunji T (2015) Preparation of POSS derivatives by the dehydrogenative condensation of T 8 H with alcohols. J Ceram Soc Jpn 123:739–743. https://doi.org/10.2109/jcersj2.123.739

    Article  CAS  Google Scholar 

  13. Huang C, Chang F (2009) Using click chemistry to fabricate ultrathin thermoresponsive microcapsules through direct covalent layer-by-layer assembly. Macromolecules 42:5155–5166. https://doi.org/10.1021/ma900478n

    Article  CAS  Google Scholar 

  14. Tokunaga T, Koge S, Mizumo T, Ohshita J, Kaneko Y (2015) Facile preparation of a soluble polymer containing polyhedral oligomeric silsesquioxane units in its main chain. Polym C 6:3039–3045. https://doi.org/10.1039/C5PY00192G

    Article  CAS  Google Scholar 

  15. Naka K, Masuoka S, Shinke R, Yamada M (2012) Synthesis of first- and second-generation imidazole- terminated POSS-core dendrimers and their pH responsive and coordination properties. Polym J 44:353–359. https://doi.org/10.1038/pj.2011.145

    Article  CAS  Google Scholar 

  16. Yu C-B, Ren L-J, Wang W (2017) Synthesis and self-assembly of a series of n POSS- b -PEO block copolymers with varying shape anisotropy. Molecules 22:622–630. https://doi.org/10.3390/molecules22040622

    Article  CAS  Google Scholar 

  17. Zhang W, Fang B, Walther A, Mu AHE (2009) Synthesis via RAFT polymerization of tadpole-shaped organic/inorganic hybrid poly (acrylic acid) containing polyhedral oligomeric silsesquioxane (POSS) and their self-assembly in water. Macromolecules 42:2563–2569

    Article  CAS  Google Scholar 

  18. Shockey EG, Bolf AG, Jones PF, Schwab JJ, Chaffee KP, Haddad TS, Lichtenhan JD (1999) Functionalized polyhedral oligosilsesquioxane (POSS) macromers: new graftable POSS hydride, POSS α-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS-siloxane triblocks. Appl Organomet Chem 13:311–327. https://doi.org/10.1002/(SICI)1099-0739

    Article  CAS  Google Scholar 

  19. Lichtenhan JD, Otonari YA, Cam MJ, Carr MJ (1995) Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28:8435–8437. https://doi.org/10.1021/ma00128a067

    Article  CAS  Google Scholar 

  20. Hirai T, Leolukman M, Hayakawa T, Kakimoto MA, Gopalan P (2008) Hierarchical nanostructures of organosilicate nanosheets within self-organized block copolymer films. Macromolecules 41:4558–4560. https://doi.org/10.1021/ma800872v

    Article  CAS  Google Scholar 

  21. Pramudya I, Rico CG, Lee C, Chung H (2016) POSS-containing bioinspired adhesives with enhanced mechanical and optical properties for biomedical applications. Biomacromolecules 17:3853–3861. https://doi.org/10.1021/acs.biomac.6b00805

    Article  CAS  PubMed  Google Scholar 

  22. Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS-siloxane copolymers. Chem Mater 8:1250–1259. https://doi.org/10.1021/cm950536x

    Article  CAS  Google Scholar 

  23. Hoque MA, Kakihana Y, Shinke S, Kawakami Y (2009) Polysiloxanes with periodically distributed isomeric double-decker silsesquioxane in the main chain. Macromolecules 42:3309–3315. https://doi.org/10.1021/ma900124x

    Article  CAS  Google Scholar 

  24. Liu N, Li L, Wang L, Zheng S (2017) Organic-inorganic polybenzoxazine copolymers with double decker silsesquioxanes in the main chains: synthesis and thermally activated ring-opening polymerization behavior. Polym (Guildf) 109:254–265. https://doi.org/10.1016/j.polymer.2016.12.049

    Article  CAS  Google Scholar 

  25. Sodkhomkhum R, Ervithayasuporn V (2016) Synthesis of poly(siloxane/double-decker silsesquioxane) via dehydrocarbonative condensation reaction and its functionalization. Polymer (United Kingdom) 86:113–119. https://doi.org/10.1016/j.polymer.2016.01.044

    Article  CAS  Google Scholar 

  26. Furgal JC, Jung JH, Clark S, Goodson T, Laine RM (2013) Beads on a chain (BoC) phenylsilsesquioxane (SQ) polymers via F− catalyzed rearrangements and ADMET or reverse heck cross- coupling reactions: through chain, extended conjugation in 3-D with potential for dendronization. Macromolecules 46:7591–7604. https://doi.org/10.1021/ma401423f

    Article  CAS  Google Scholar 

  27. Jung JH, Furgal JC, Clark S, Schwartz M, Chou K, Laine RM (2013) Beads on a chain (BoC) polymers with model dendronized beads. Copolymerization of [(4-NH2C6H4SiO1.5)6(IPhSiO1.5)2] and [(4-CH3OC6H4SiO1.5)6(IPhSiO1.5)2] with 1,4-Diethynylbenzene (DEB) gives through-chain, extended 3-D conjugation in the excited state tha. Macromolecules 6:7580–7590. https://doi.org/10.1021/ma401422t|

    Article  Google Scholar 

  28. Jung JH, Laine RM (2011) Beads on a chain (BOC) polymers formed from the reaction of [NH 2 PhSiO 1.5 ] x [PhSiO 1.5 ] 10– x and [NH 2 PhSiO 1.5 ] x [PhSiO 1.5 ] 12– x mixtures ( x = 2–4) with the Diglycidyl ether of bisphenol A. Macromolecules 44:7263–7272. https://doi.org/10.1021/ma201032r

    Article  CAS  Google Scholar 

  29. Morimoto Y, Watanabe K, Ootake N, Inagaki J, Yoshida K, Ohguma K (2004) POSS patent: US 20040249103

    Google Scholar 

  30. Yoshimatsu M, Komori K, Ohnagamitsu Y, Sueyoshi N, Kawashima N, Chinen S, Murakami Y, Izumi J, Watanabe K, Matuo T, Sakai K, Kunitake M (n.d.) Necklace shaped dimethylsiloxane polymers bearing a polyhedral oligomeric silsesquioxane cage prepared by polycondensation and ring-opening polymerization. pp 2–5

    Google Scholar 

  31. Kunitake M, Sakai K, Hirabayashi C, Morimoto Y, Kunitake M, Sakai K, Hirabayashi C, Morimoto Y (2006) JP 2006022207, n.d

    Google Scholar 

  32. Seino M, Hayakawa T, Ishida Y, Kakimoto MA, Watanabe K, Oikawa H (2006) Hydrosilylation polymerization of double-decker-shaped silsesquioxane having hydrosilane with diynes. Macromolecules 39:3773–3775. https://doi.org/10.1021/ma052631p

    Article  CAS  Google Scholar 

  33. Maegawa T, Irie Y, Fueno H, Tanaka K, Naka K (2014) Synthesis and polymerization of a para -disubstituted T8 caged hexaisobutyl-POSS monomer. Chem Lett 43:1532–1534. https://doi.org/10.1246/cl.140515

    Article  CAS  Google Scholar 

  34. Maegawa T, Irie Y, Imoto H, Fueno H, Tanaka K, Naka K (2015) Para-bisvinylhexaisobutyl-substituted T 8 caged monomer: synthesis and hydrosilylation polymerization. Polym Chem 6:7500–7504. https://doi.org/10.1039/C5PY01262G

    Article  CAS  Google Scholar 

  35. Kunitake M, Nishi T, Yamamoto H, Nasu K, Manabe O, Nakashima N (1994) Preparation and characterization of two-dimensional cross-linked monolayers and Langmuir-Blodgett films of oligo(dimethylsiloxane) copolymer. Langmuir 10:3207–3212. https://doi.org/10.1021/la00021a051

    Article  CAS  Google Scholar 

  36. Kato D, Masaike M, Majima T, Hirata Y, Mizutani F, Sakata M, Hirayama C, Kunitake M (2002) Permselective monolayer membrane based on two-dimensional cross-linked polysiloxane LB films for hydrogen peroxide detecting glucose sensors. Chem Commun (Camb):2616–2617. https://doi.org/10.1039/B207957G

  37. Ervithayasuporn V, Sodkhomkhum R, Teerawatananond T, Phurat C, Phinyocheep P, Somsook E, Osotchan T (2013) Unprecedented formation of cis- and trans-di[(3-chloropropyl) isopropoxysilyl]-bridged double-decker octaphenylsilsesquioxanes. Eur J Inorg Chem 2013:3292–3296. https://doi.org/10.1002/ejic.201300283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I am deeply grateful to the students who engaged in this research and JNC Corporation and JNC Petrochemical Corporation for continued collaboration. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “New Polymeric Materials Based on Element-Blocks” (24102006) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Kunitake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kunitake, M. (2019). Necklace-Shaped Dimethylsiloxane Polymers Bearing Polyhedral Oligomeric Silsesquioxane Cages as a New Type of Organic–Inorganic Hybrid. In: Chujo, Y. (eds) New Polymeric Materials Based on Element-Blocks. Springer, Singapore. https://doi.org/10.1007/978-981-13-2889-3_8

Download citation

Publish with us

Policies and ethics