Skip to main content

Network Formation Conditions Control Water Drop Adhesion for VK100 and a Model Pt-Cured Silicone

  • Chapter
  • First Online:
New Polymeric Materials Based on Element-Blocks

Abstract

Unexpected wetting behavior is reported for silicone elastomers platinum cured at 37 °C in water or saline. These conditions were prompted as a way to mimic cure under physiologically relevant conditions for VK100, a Pt-cured silicone used for vertebral augmentation. Water contact angles (CAs) were determined by the drop addition/withdrawal method. Network formation in air, water, or saline gave high advancing CAs (θA). However, compared to 74° for air cure, network formation in water (56°) or saline (46°) gave low receding CAs (θR). Thus, water drop adhesion to VK100 and a model Pt-cured silicone depends on whether network formation is carried out in water or saline (“sticky”) or in air (“slippery”). For cure in water or saline, autoxidation (Si-H ➔ Si-OH) and near-surface entrapment of cross-linking chains containing –Si-OH are proposed to account for low receding CAs. The origin of the low θR and high contact angle hysteresis (54–72°) is correlated with the theory of Johnson and Dettre by which a small area fraction of polar groups impedes retraction of a receding water drop. These results are of interest given the importance of polar interactions at interfaces that favor adhesion to bone and influence on biofouling, adhesion of proteins, and interactions with human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306

    Article  CAS  Google Scholar 

  2. Lien N, Hang M, Wang W, Tian Y, Wang L, McCarthy TJ, Chen W (2014) Simple and improved approaches to long-lasting, hydrophilic silicones derived from commercially available precursors. ACS Appl Mater Interfaces 6:22876

    Article  Google Scholar 

  3. Wang C, Nair SS, Veeravalli S, Moseh P, Wynne KJ (2016) Sticky or slippery wetting: network formation conditions can provide a one-way street for water flow on platinum-cured silicone. ACS Appl Mater Interfaces 8:14252

    Article  CAS  Google Scholar 

  4. Mittal KL (ed) (1978) ASTM special technical publication, vol. 640: adhesion measurement of thin films, thick films, and bulk coatings. ASTM, Philadelphia

    Google Scholar 

  5. Gao LC, McCarthy TJ (2009) Wetting 101 degrees. Langmuir 25:14105

    Article  CAS  Google Scholar 

  6. Seaton JP, Carmichael R (2008) Materials and apparatus for in-situ bone repair. WO2008039807A2 28pp

    Google Scholar 

  7. Seaton JP, Carmichael R (2009) Materials and apparatus for in-situ bone repair. WO2009064541A1 32pp

    Google Scholar 

  8. Patel SK, Malone S, Cohen C, Gillmor JR, Colby RH (1992) Elastic-modulus and equilibrium swelling of poly(dimethylsiloxane) networkS. Macromolecules 25:5241

    Article  CAS  Google Scholar 

  9. Perutz S, Kramer EJ, Baney J, Hui CY (1997) Adhesion between hydrolyzed surfaces of poly(dimethylsiloxane) networks. Macromolecules 30:7964

    Article  CAS  Google Scholar 

  10. Uilk JM, Mera AE, Fox RB, Wynne KJ (2003) Hydrosilation-cured poly(dimethylsiloxane) networks: intrinsic contact angles via dynamic contact angle analysis. Macromolecules 36:3689

    Article  CAS  Google Scholar 

  11. Seaton JP, Trebing LM (2007) Injectable compositions containing curable polysiloxane elastic materials for repair and reconstruction of intervertebral discs and other reconstructive surgery. WO2007062082A2 24pp

    Google Scholar 

  12. Magonov SN, Elings V, Whangbo MH (1997) Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf Sci 375:L385

    Article  CAS  Google Scholar 

  13. Gasbarrini A, Ghermandi R, Girolami M, Boriani S, Akman YE (2017) Elastoplasty as a promising novel technique: vertebral augmentation with an elastic silicone-based polymer. Acta Orthop Traumatol Turc 51:209–214

    Article  Google Scholar 

  14. Mackel MJ, Sanchez S, Kornfield JA (2007) Humidity-dependent wetting properties of high hysteresis surfaces. Langmuir 23:3

    Article  CAS  Google Scholar 

  15. Kennan JJ, Peters YA, Swarthout DE, Owen MJ, Namkanisorn A, Chaudhury MK (1997) Effect of saline exposure on the surface and bulk properties of medical grade silicone elastomers. J Biomed Mater Res 36:487

    Article  CAS  Google Scholar 

  16. Di Terlizzi R, Platt S (2006) The function, composition and analysis of cerebrospinal fluid in companion animals: part I – function and composition. Vet J 172:422

    Article  Google Scholar 

  17. Spector R, Snodgrass SR, Johanson CE (2015) A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273:57

    Article  CAS  Google Scholar 

  18. Hooshfar S, Basiri B, Bartlett MG (2016) Development of a surrogate matrix for cerebral spinal fluid for liquid chromatography/mass spectrometry based analytical methods. Rapid Commun Mass Spectrom 30:854

    Article  CAS  Google Scholar 

  19. Heller W, Cheng MH, Greene BW (1966) Surface tension measurements by means of microcone tensiometer. J Colloid Interface Sci 22:179

    Article  CAS  Google Scholar 

  20. Chanda M (2000) Advanced polymer chemistry. Marcel Dekker, New York

    Google Scholar 

  21. Owen MJ (1981) Why silicones behave funny. Chem Tech 11:288

    CAS  Google Scholar 

  22. Owen MJ (1990) In: Zeigler JM, Fearon FW (eds) Siloxane surface activity, vol 224. American Chemical Society, Washington, DC

    Google Scholar 

  23. Bartell FE, Ray BR (1952) Wetting characteristics of cellulose derivatives. I. Contact angles formed by water and by organic liquids. J Am Chem Soc 74:778

    Article  CAS  Google Scholar 

  24. Johnson RE Jr, Dettre RH (1964) Contact angle hysteresis. III. Study of an idealized heterogeneous surface. J Phys Chem 68:1744

    Article  CAS  Google Scholar 

  25. Dettre RH, Johnson RE (1965) Contact angle hysteresis. 4. Contact angle measurements on heterogeneous surfaces. J Phys Chem 69:1507

    Article  CAS  Google Scholar 

  26. Pease DM (1945) The significance of the contact angle in relation to the solid surface. J Phys Chem 49:107

    Article  CAS  Google Scholar 

  27. Erli HJ, Marx R, Paar O, Niethard FU, Weber M, Wirtz DC (2003) Surface pretreatments for medical application of adhesion. Biomed Eng Online 2:15

    Article  Google Scholar 

  28. Hawkins ML, Fay F, Rehel K, Linossier I, Grunlan MA (2014) Bacteria and diatom resistance of silicones modified with PEO-silane amphiphiles. Biofouling 30:247

    Article  CAS  Google Scholar 

  29. Wenning BM, Martinelli E, Mieszkin S, Finlay JA, Fischer D, Callow JA, Callow ME, Leonardi AK, Ober CK, Galli G (2017) Model amphiphilic block copolymers with tailored molecular weight and composition in PDMS-based films to limit soft biofouling. ACS Appl Mater Interfaces 9:16505

    Article  CAS  Google Scholar 

  30. Elwing H, Welin S, Askendal A, Nilsson U, Lundstrom I (1987) A wettability gradient-method for studies of macromolecular interactions at the liquid solid interface. J Colloid Interface Sci 119:203

    Article  CAS  Google Scholar 

  31. Lin SY, Parasuraman VR, Mekuria SL, Peng S, Tsai HC, Hsiue GH (2017) Plasma initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on silicone elastomer surfaces to enhance bio(hemo)compatibility. Surf Coat Technol 315:342

    Article  CAS  Google Scholar 

  32. Liu PS, Chen Q, Yuan B, Chen MZ, Wu SS, Lin SC, Shen J (2013) Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility. Mater Sci Eng C-Mater Biol Appl 33:3865

    Article  CAS  Google Scholar 

  33. Pedraza E, Brady AC, Fraker CA, Stabler CL (2013) Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications. J Biomater Sci-Polym Ed 24:1041

    Article  CAS  Google Scholar 

  34. Kurian P, Kennedy JP (2002) Novel tricontinuous hydrophilic-lipophilic-oxyphilic membranes: synthesis and characterization. J Polym Sci A Polym Chem 40(9):1209–1217

    Article  CAS  Google Scholar 

  35. Simpson TRE, Tabatabaian Z, Jeynes C, Parbhoo B, Keddie JL (2004) Influence of interfaces on the rates of crosslinking in poly(dimethyl siloxane) coatings. J Polym Sci A Polym Chem 42(6):1421–1431

    Article  CAS  Google Scholar 

Download references

Acknowledgment

J. Lumen thanks BONWRx LLC for a summer fellowship and materials. K.J.W. thanks the National Science Foundation, Division of Materials Research, Polymers Program (DMR-1206259) and Polymers/Biomaterials Programs (DMR-1608022), and the School of Engineering Foundation for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Wynne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lumen, J.B., Jarrell, R.M., Nair, S.S., Wang, C., Kayesh, A.M., Wynne, K.J. (2019). Network Formation Conditions Control Water Drop Adhesion for VK100 and a Model Pt-Cured Silicone. In: Chujo, Y. (eds) New Polymeric Materials Based on Element-Blocks. Springer, Singapore. https://doi.org/10.1007/978-981-13-2889-3_17

Download citation

Publish with us

Policies and ethics