Skip to main content

How Can We Control the “Element-Blocks” in Transition Metal Oxide Crystals?

  • Chapter
  • First Online:
New Polymeric Materials Based on Element-Blocks
  • 633 Accesses

Abstract

Crystalline transition metal oxides show intriguing properties and important functionalities relevant to the electrical conduction, dielectricity, magnetism, and optical phenomenon. It seems that the concept of “element-blocks” and “element-block polymers” suitable to the organic polymers and organic-inorganic hybrid materials is not adequate at all for the consideration of structure and properties of transition metal oxide crystals in which ionic bonds between cations and oxide ions are predominant. However, it is possible to consider the oxygen polyhedron, at the center of which the transition metal ion is set, to be an element-block and to regard the whole crystal structure or a part of the structure as an element-block polymer. Also, one can modify the structure of element-block polymers inside the transition metal oxide crystals so as to change the electrical, magnetic, and optical properties drastically, although the process to realize the modification is not so sophisticated as organic polymers and organic-inorganic hybrid materials, for which a variety of chemical reactions are effectively utilized. We exemplify some transition metal oxide crystals for which the control of element-blocks is possible to achieve a drastic change in the magnetic, dielectric, and optical properties. We present three topics: (1) ferrimagnetism induced in spinel-type ZnFe2O4 by exchange of cations; (2) ferromagnetism caused by the change of cell volume or crystal system in perovskite-type EuTiO3, EuZrO3, and EuHfO3; and (3) piezoelectricity as well as optical second-order nonlinearity realized by oxygen octahedral rotation in Ruddlesden-Popper phases, NaRTiO4 (R: rare-earth element). The methods to control the element-blocks mentioned in the three topics are to change the way by which element-blocks are connected with each other, to change the chemical interaction or the overlap of atomic orbitals between element-blocks, and to make local displacement (rotation) of element-blocks to alter drastically the overall symmetry of the long-range structure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bednorz JG, Müller KA (1986) Possible high T c superconductivity in the Ba−La−Cu−O system. Z Phys B 64(2):189–193

    Article  CAS  Google Scholar 

  2. Wu MK, Ashburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW (1987) Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys Rev Lett 58(9):908–910

    Article  CAS  Google Scholar 

  3. Maeda H, Tanaka Y, Fukutomi M, Asano T (1988) A new high-T c oxide superconductor without a rare earth element. Jpn J Appl Phys 27:L209–L210

    Article  CAS  Google Scholar 

  4. Schilling A, Cantoni M, Guo JD, Ott HR (1993) Superconductivity above 130 K in the Hg−Ba−Ca−Cu−O system. Nature 363:56–58

    Article  CAS  Google Scholar 

  5. Schooley JF, Hosler WR, Ambler E, Becker JH, Cohen ML, Koonce CS (1965) Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3. Phys Rev Lett 14:305–307

    Article  CAS  Google Scholar 

  6. Baratoff A, Binnig G (1981) Mechanism of superconductivity in SrTiO3. Phys B+C 108:1335–1336

    Article  CAS  Google Scholar 

  7. Leitner A, Rogers CT, Price JC, Rudman DA, Herman DR (1998) Pulsed laser deposition of superconducting Nb-doped strontium titanate thin films. Appl Phys Lett 72:3065–3067

    Article  CAS  Google Scholar 

  8. Olaya D, Pan F, Rogers CT, Price JC (2004) Superconductivity in La-doped strontium titanate thin films. Appl Phys Lett 84:4020–4022

    Article  CAS  Google Scholar 

  9. Reyren N, Thiel S, Caviglia AD, Fitting Kourkoutis L, Hammerl G, Richter C, Schneider CW, Kopp T, Rüetschi A-S, Jaccard D, Gabay M, Muller DA, Triscone J-M, Mannhart J (2007) Superconducting interfaces between insulating oxides. Science 317:1196–1199

    Article  CAS  Google Scholar 

  10. Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S, Saitoh E (2010) Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464:262–266

    Article  CAS  Google Scholar 

  11. Serga AA, Chumak AV, Hillebrands B (2010) YIG magnonics. J Phys D 43:264002

    Article  Google Scholar 

  12. Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264:413–415

    Article  CAS  Google Scholar 

  13. Chahara K, Ohno T, Kasai M, Kozono Y (1993) Magnetoresistance in magnetic manganese oxide with intrinsic antiferromagnetic spin structure. Appl Phys Lett 63:1990–1992

    Article  CAS  Google Scholar 

  14. Tokura Y, Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Furukawa N (1994) Giant magnetotransport phenomena in filling-controlled Kondo lattice system La1-xSrxMnO3. J Phys Soc Jpn 63:3931

    Article  CAS  Google Scholar 

  15. Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys Rev B 51:14103

    Article  CAS  Google Scholar 

  16. von Helmolt R, Meeker HB, Schultz L, Samwer K (1993) Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys Rev Lett 71:2331

    Article  Google Scholar 

  17. Tomioka Y, Asamitsu A, Moritomo Y, Tokura Y (1995) Anomalous magnetotransport properties of Pr1-xCaxMnO3. J Phys Soc Jpn 64:3626

    Article  CAS  Google Scholar 

  18. Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y (2003a) Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B 67:180401

    Article  Google Scholar 

  19. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719

    Article  CAS  Google Scholar 

  20. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y (2003b) Magnetic control of ferroelectric polarization. Nature 426:55–58

    Article  CAS  Google Scholar 

  21. Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6(1):13–20

    Article  CAS  Google Scholar 

  22. Tokura Y (2006) Multiferroics as quantum electromagnets. Science 312:1481–1482

    Article  CAS  Google Scholar 

  23. Chikazumi S (1978) Physics of ferromagnetism, vol 1. Syokabo, Tokyo, p 216 [in Japanese]

    Google Scholar 

  24. Tanaka K, Nakashima S, Fujita K, Hirao K (2003) High magnetization and the Faraday effect for ferrimagnetic zinc ferrite thin film. J Phys Condens Matter 15:L469–L474

    Article  CAS  Google Scholar 

  25. Nakashima S, Fujita K, Tanaka K, Hirao K (2005) High magnetization and the high-temperature superparamagnetic transition with intercluster interaction in disordered zinc ferrite thin film. J Phys Condens Matter 17(1):137–149

    Article  CAS  Google Scholar 

  26. Nakashima S, Fujita K, Tanaka K, Hirao K, Yamamoto T, Tanaka I (2007a) Thermal annealing effect on magnetism and cation distribution in disordered ZnFe2O4 thin films deposited on glass substrates. J Magn Magn Mater 310:2543–2545

    Article  CAS  Google Scholar 

  27. Nakashima S, Fujita K, Tanaka K, Hirao K, Yamamoto T, Tanaka I (2007b) First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution. Phys Rev B 75:174443–174443

    Article  Google Scholar 

  28. Tanaka K, Nakashima S, Fujita K, Hirao K (2006) Large Faraday effect in a short wavelength range for disordered zinc ferrite thin films. J Appl Phys 99:106103

    Article  Google Scholar 

  29. Borrelli NF, Murphy JA (1971) Magnetooptic properties of magnetite films. J Appl Phys 42:1120–1123

    Article  CAS  Google Scholar 

  30. Takeuchi H (1975) The Faraday effect of bismuth substituted rare-earth iron garnet. Jpn J Appl Phys 14:1903–1910

    Article  CAS  Google Scholar 

  31. Nakamura H, Ohmi F, Kaneko Y, Sawada Y, Watada A, Machida H (1987) Cobalt-titanium substituted barium ferrite films for magneto-optical memory. J Appl Phys 61:3346–3348

    Article  CAS  Google Scholar 

  32. Viallet V, Marucco J-F, Saint J, Herbst-Ghysel M, Dragoe N (2008) Structural, magnetic and electrical properties of a perovskite containing divalent europium EuZrO3. J Alloys Compd 461:346

    Article  CAS  Google Scholar 

  33. Zong Y, Fujita K, Akamatsu H, Murai S, Tanaka K (2010) Antiferromagnetism of perovskite EuZrO3. J Solid State Chem 183:168–172

    Article  CAS  Google Scholar 

  34. Akamatsu H, Fujita K, Hayashi H, Kawamoto T, Kumagai Y, Zong Y, Iwata K, Oba F, Tanaka I, Tanaka K (2012) Crystal and electronic structure and magnetic properties of divalent europium perovskite oxides EuMO3 (M=Ti, Zr, and Hf): experimental and first-principles approaches. Inorg Chem 51:4560–4567

    Article  CAS  Google Scholar 

  35. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    Article  CAS  Google Scholar 

  36. McGuire TR, Shafer MW, Joenk RJ, Alperin HA, Pickart SJ (1966) Magnetic structure of EuTiO3. J Appl Phys 37:981–982

    Article  CAS  Google Scholar 

  37. Chien C-L, DeBenedetti S, De F, Barros S (1974) Magnetic properties of EuTiO3, Eu2TiO4, and Eu3Ti2O7. Phys Rev B 10:3913

    Article  CAS  Google Scholar 

  38. Katsufuji T, Takagi H (2001) Coupling between magnetism and dielectric properties in quantum paraelectric EuTiO3. Phys Rev B 64:054415

    Article  Google Scholar 

  39. Kolodiazhnyi T, Fujita K, Wang L, Zong Y, Tanaka K, Sakka Y, Takayama-Muromachi E (2010) Magnetodielectric effect in EuZrO3. Appl Phys Lett 96:252901

    Article  Google Scholar 

  40. Fujita K, Wakasugi N, Murai S, Zong Y, Tanaka K (2009) High-quality antiferromagnetic EuTiO3 epitaxial thin films on SrTiO3 prepared by pulsed laser deposition and post-annealing. Appl Phys Lett 94:062512

    Article  Google Scholar 

  41. Tanaka K, Fujita K, Maruyama Y, Kususe Y, Murakami H, Akamatsu H, Zong Y, Murai S (2013) Ferromagnetism induced by lattice volume expansion and amorphization in EuTiO3 thin films. J Mater Res 28:1031

    Article  CAS  Google Scholar 

  42. Fennie CJ, Rabe KM (2006) Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys Rev Lett 97:267602

    Article  Google Scholar 

  43. Ranjan R, Nabi HS, Pentcheva R (2007) Electronic structure and magnetism of EuTiO3 : a first-principles study. J Phys Condens Matter 19:406217

    Article  Google Scholar 

  44. Lee JH, Fang L, Vlahos E, Ke X, Jung YW, Fitting Kourkoutis L, Kim J-W, Ryan PJ, Heeg T, Roeckerath M, Goian V, Bernhagen M, Uecker R, Hammel PC, Rabe KM, Kamba S, Schubert J, Freeland JW, Muller DA, Fennie CJ, Schiffer P, Gopalan V, Johnston-Halperin E, Schlom DG (2010) A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466:954

    Article  CAS  Google Scholar 

  45. Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K, Tanaka I (2011) Antiferromagnetic superexchange via 3d states of titanium in EuTiO3 as seen from hybrid Hartree-Fock density functional calculations. Phys Rev B 83:214421

    Article  Google Scholar 

  46. Anderson PW (1959) New approach to the theory of superexchange interactions. Phys Rev 115:2–13

    Article  CAS  Google Scholar 

  47. Shafer MW (1965) Preparation and crystal chemistry of divalent europium compounds. J Appl Phys 36:1145–1152

    Article  CAS  Google Scholar 

  48. Kunes J, Ku W, Pickett WE (2005) Exchange coupling in Eu monochalcogenides from first principles. J Phys Soc Jpn 74:1408–1411

    Article  CAS  Google Scholar 

  49. Souza-Neto NM, Haskel D, Tseng Y-C, Lapertot G (2009) Pressure-induced electronic mixing and enhancement of ferromagnetic ordering in EuX (X=Te, se, S, O) magnetic semiconductors. Phys Rev Lett 102:057206

    Article  Google Scholar 

  50. Akamatsu H, Kumagai Y, Oba F, Fujita K, Tanaka K, Tanaka I (2013) Strong correlation between magnetic interaction and oxygen octahedral rotation in divalent europium perovskites. Adv Funct Mater 23:1864

    Article  CAS  Google Scholar 

  51. Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J-M, Ghosez P (2008) Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452:732–736

    Article  CAS  Google Scholar 

  52. Benedek NA, Fennie CJ (2011) Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys Rev Lett 106(10):107204

    Article  Google Scholar 

  53. Benedek NA, Mulder AT, Fennie CJ (2012) Polar octahedral rotations: a path to new multifunctional materials. J Solid State Chem 195:11–20

    Article  CAS  Google Scholar 

  54. Rondinelli JM, Fennie CJ (2012) Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv Mater 24:1961–1968

    Article  CAS  Google Scholar 

  55. Mulder AT, Benedek NA, Rondinelli JM, Fennie CJ (2013) Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-popper compounds. Adv Funct Mater 23:4810

    CAS  Google Scholar 

  56. Balachandran PV, Puggioni D, Rondinelli JM (2014) Crystal-chemistry guidelines for noncentrosymmetric A2BO4 Ruddlesden-popper oxides. Inorg Chem 53:336

    Article  CAS  Google Scholar 

  57. Fukushima T, Stroppa A, Picozzi S, Perez-Mato JM (2011) Large ferroelectric polarization in the new double perovskite NaLaMnWO6 induced by non-polar instabilities. Phys Chem Chem Phys 13:12186

    Article  CAS  Google Scholar 

  58. Toda K, Kameo Y, Kurita S, Sato M (1996) Crystal structure determination and ionic conductivity of layered perovskite compounds NaLnTiO4 (ln = rare earth). J Alloys Compd 234:19–25

    Article  CAS  Google Scholar 

  59. Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2 -type SiO2 at high pressures. Phys Rev B 78:134106

    Article  Google Scholar 

  60. Akamatsu H, Fujita K, Kuge T, Gupta AS, Togo A, Lei S, Xue F, Stone G, Rondinelli JM, Chen L-Q, Tanaka I, Gopalan V, Tanaka K (2014) Inversion symmetry breaking by oxygen octahedral rotations in Ruddlesden-popper NaRTiO4 family. Phys Rev Lett 112:187602

    Article  Google Scholar 

  61. Gupta AS, Akamatsu H, Strayer ME, Lei S, Kuge T, Fujita K, dela Cruz C, Togo A, Tanaka I, Tanaka K, Mallouk TE, Gopalan V (2015) Improper inversion symmetry breaking and piezoelectricity through oxygen octahedral rotations in layered Perovskite family, LiRTiO4 (R=rare earths). Adv Electron Mater 1:1500196

    Google Scholar 

  62. Gupta AS, Akamatsu H, Brown F, Nguyen M, Strayer M, Lapidus S, Yoshida S, Fujita K, Tanaka K, Tanaka I, Mallouk T, Gopalan V (2017) Competing structural instabilities in the Ruddlesden-popper derivatives HRTiO4 (R = rare earths): oxygen octahedral rotations inducing noncentrosymmetricity and layer sliding retaining centrosymmetricity. Chem Mater 29:656–665

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank many collaborators: Dr. Seisuke Nakashima (currently Shizuoka University); Prof. Hirofumi Akamatsu (currently Kyushu University); Dr. Yanhua Zong; Naoki Wakasugi; Yuya Maruyama; Toshihiro Kuge; Dr. Yoshiro Kususe; Hideo Murakami; Dr. Takahiro Kawamoto; Koji Iwata; Dr. Shunsuke Murai; Prof. Kazuyuki Hirao of the Department of Material Chemistry, Kyoto University; Prof. Isao Tanaka; Prof. Tomoyuki Yamamoto (currently Waseda University); Prof. Fumiyasu Oba (currently Tokyo Institute of Technology); Dr. Yu Kumagai; Dr. Hiroyuki Hayashi; Prof. Atsushi Togo of the Department of Materials Science and Engineering, Kyoto University; Prof. Venkatraman Gopalan; Prof. Long-Qing Chen; Dr. Arnab Sen Gupta; Dr. Shiming Lei; Dr. Fei Xue; Dr. Greg Stone of Pennsylvania State University; and Prof. James M. Rondinelli of Drexel University. Especially, we are indebted to Prof. Isao Tanaka and his research group members as well as Prof. Hirofumi Akamatsu for the theoretical calculations. Also, we thank Suguru Yoshida of the Department of Material Chemistry, Kyoto University, for the preparation of Fig. 15.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhisa Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, K., Fujita, K. (2019). How Can We Control the “Element-Blocks” in Transition Metal Oxide Crystals?. In: Chujo, Y. (eds) New Polymeric Materials Based on Element-Blocks. Springer, Singapore. https://doi.org/10.1007/978-981-13-2889-3_15

Download citation

Publish with us

Policies and ethics