Skip to main content

Element-Block Materials: New Concept for the Development of Advanced Hybrids and Inorganic Polymers

  • Chapter
  • First Online:
New Polymeric Materials Based on Element-Blocks

Abstract

By incorporating highly functional inorganic units in organic materials, the creation of advanced materials possessing both advantages of organic components such as designability and good processability and inorganic elements can be expected. However, there are several difficulties in combination with organic and inorganic components due to intrinsic low compatibility between organic and inorganic components. Although organic-inorganic hybrids have been developed, further strategies for material design such as for precise controls of nanostructures in the hybrids are strongly required. To meet these demands, we propose the new concept for material design based on an “element-block” which is defined as a minimum functional unit composed of heteroatoms. In this chapter, the basic idea of an “element-block” and the recent progresses in the development of “element-block materials” are mainly from our recent works. As a representative example, we illustrate the element-blocks involving specific steric structures such as polyhedral oligomeric silsesquioxane (POSS), modified boron dipyrromethenes (BODIPYs) having the cardo boron and [2.2]paracyclophanes as a chiral source and explain material properties originated from these element-blocks. The roles of these element-blocks in the materials are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gon M, Tanaka K, Chujo Y (2017) Creative synthesis of organic–inorganic molecular hybrid materials. Bull Chem Soc Jpn 90:463–474

    Article  CAS  Google Scholar 

  2. Chujo Y, Tanaka K (2015) New polymeric materials based on element-blocks. Bull Chem Soc Jpn 88:633–643

    Article  CAS  Google Scholar 

  3. Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22:1733–1746

    Article  CAS  Google Scholar 

  4. Tanaka K, Chujo Y (2013) Chemicals-inspired biomaterials; developing biomaterials inspired by material science based on POSS. Bull Chem Soc Jpn 86:1231–1239

    Article  CAS  Google Scholar 

  5. Tanaka K, Chujo Y (2013) Unique properties of amphiphilic POSS and their applications. Polym J 45:247–254

    Article  CAS  Google Scholar 

  6. Tanaka K, Kozuka H, Ueda K, Jeon JH, Chujo Y (2017) POSS-based molecular fillers for simultaneously enhancing thermal and viscoelasticity of poly(methyl methacrylate) films. Mater Lett 203:62–67

    Article  CAS  Google Scholar 

  7. Ueda K, Tanaka K, Chujo Y (2017) Synthesis of POSS derivatives having dual types of alkyl substituents via in situ sol−gel reactions and their application as a molecular filler for low-refractive and highly-durable materials. Bull Chem Soc Jpn 90:205–209

    Article  CAS  Google Scholar 

  8. Tanaka K, Yamane H, Mitamura K, Watase S, Matsukawa K, Chujo Y (2014) Transformation of sulfur to organic−inorganic hybrids employed by POSS networks and their application for the modulation of refractive indices. J Polym Sci Part A Polym Chem 52:2588–2595

    Article  CAS  Google Scholar 

  9. Jeon JH, Tanaka K, Chujo Y (2013) Rational design of POSS fillers for simultaneous improvements of thermomechanical properties and lowering refractive indices of polymer films. J Polym Sci Part A Polym Chem 51:3583–3589

    Article  CAS  Google Scholar 

  10. Tanaka K, Adachi S, Chujo Y (2010) Side-chain effect of octa-substituted POSS fillers on refraction in polymer composites. J Polym Sci Part A Polym Chem 48:5712–5717

    Article  CAS  Google Scholar 

  11. Tanaka K, Adachi S, Chujo Y (2009) Structure-property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci Part A Polym Chem 47:5690–5697

    Article  CAS  Google Scholar 

  12. Tanaka K, Ishiguro F, Chujo Y (2010) POSS ionic liquid. J Am Chem Soc 132:17649–17651

    Article  CAS  Google Scholar 

  13. Tanaka K, Ishiguro F, Chujo Y (2011) Thermodynamic study of POSS-based ionic liquids with various numbers of ion pairs. Polym J 43:708–713

    Article  CAS  Google Scholar 

  14. Jeon JH, Tanaka K, Chujo Y (2013) POSS fillers for modulating thermal properties of ionic liquids. RSC Adv 3:2422–2427

    Article  CAS  Google Scholar 

  15. Jeon JH, Tanaka K, Chujo Y (2014) Synthesis of sulfonic acid-containing POSS and its filler effects for enhancing thermal stabilities and lowering melting temperatures of ionic liquids. J Mater Chem A 2:624–630

    Article  CAS  Google Scholar 

  16. Tanaka K, Ishiguro F, Jeon JH, Hiraoka T, Chujo Y (2015) POSS ionic liquid crystals. NPG Asia Mater 7:e174

    Article  CAS  Google Scholar 

  17. Ueda K, Tanaka K, Chujo Y (2016) Remarkably high miscibility of octa-substituted POSS with commodity conjugated polymers and molecular fillers for the improvement of homogeneities of polymer matrices. Polym J 48:1133–1139

    Article  CAS  Google Scholar 

  18. Gon M, Sato K, Tanaka K, Chujo Y (2016) Controllable intramolecular interaction of 3D arranged π-conjugated luminophores based on a POSS scaffold, leading to highly thermostable and emissive materials. RSC Adv 6:78652–78660

    Article  CAS  Google Scholar 

  19. Suenaga K, Tanaka K, Chujo Y (2017) Design and luminescent chromism of fused boron complexes having constant emission efficiencies in solution, amorphous and crystalline states. Eur J Org Chem. https://doi.org/10.1002/ejoc.201700704

    Article  CAS  Google Scholar 

  20. Ohtani S, Gon M, Tanaka K, Chujo Y (2017) Flexible fused azomethine–boron complex: thermally-induced switching of crystalline-state luminescent property and thermosalient behaviors based on phase transition between polymorphs. Chem Eur J. https://doi.org/10.1002/chem.201702309

    Article  CAS  Google Scholar 

  21. Yamaguchi M, Ito S, Hirose A, Tanaka K, Chujo Y (2016) Modulation of sensitivity to mechanical stimulus in mechanofluorochromic properties by altering substituent positions in solid-state emissive diiodo boron diiminates. J Mater Chem C 3:5314–5319

    Article  Google Scholar 

  22. Yoshii R, Suenaga K, Tanaka K, Chujo Y (2015) Mechanofluorochromic materials based on aggregation-induced emission-active boron ketoiminates: regulation of the direction of the emission color changes. Chem Eur J 21:7231–7237

    Article  CAS  Google Scholar 

  23. Tanaka K, Chujo Y (2015) Recent progress of optical functional nanomaterials based on organoboron complexes with β-diketonate, ketoiminate and diiminate. NPG Asia Mater 7:e223

    Article  CAS  Google Scholar 

  24. Yoshii R, Hirose A, Tanaka K, Chujo Y (2014) Functionalization of boron diiminates with unique optical properties: multicolor tuning of crystallization-induced emission and introduction into the main-chain of conjugated polymers. J Am Chem Soc 136:18131–18139

    Article  CAS  Google Scholar 

  25. Tanaka K, Yanagida T, Hirose A, Yamane H, Yoshii R, Chujo Y (2015) Synthesis and color tuning of boron diiminate conjugated polymers with aggregation-induced scintillation properties. RSC Adv 5:96653–96659

    Article  CAS  Google Scholar 

  26. Yamaguchi M, Ito S, Hirose A, Tanaka K, Chujo Y (2017) Control of aggregation-induced emission versus fluorescence aggregation-caused quenching by the bond existence at the single site in boron pyridinoiminate complexes. Mater Chem Front. https://doi.org/10.1039/c7qm00076f

    Article  CAS  Google Scholar 

  27. Suenaga K, Yoshii R, Tanaka K, Chujo Y (2016) Sponge-type emissive chemosensors for the protein detection based on boron ketoiminate-modifying hydrogels with aggregation-induced blue shift emission property. Macromol Chem Phys 217:414–417

    Article  CAS  Google Scholar 

  28. Hirose A, Tanaka K, Yoshii R, Chujo Y (2015) Film-type chemosensors based on boron diminate polymers having oxidation-induced emission properties. Polym Chem 6:5590–5595

    Article  CAS  Google Scholar 

  29. Kajiwara Y, Nagai A, Tanaka K, Chujo Y (2013) Efficient simultaneous emission from RGB-emitting organoboron dyes incorporated into organic-inorganic hybrids and preparation of white light-emitting materials. J Mater Chem C 1:4437–4444

    Article  CAS  Google Scholar 

  30. Yoshii R, Tanaka K, Chujo Y (2014) Conjugated polymers based on tautomeric units: regulation of main-chain conjugation and expression of aggregation induced emission property via boron-complexation. Macromolecules 47:2268–2278

    Article  CAS  Google Scholar 

  31. Yoshii R, Nagai A, Tanaka K, Chujo Y (2014) Boron ketoiminate-based polymers: fine-tuning of the emission color and expression of strong emission both in the solution and film state. Macromol Rapid Commun 35:1315–1319

    Article  CAS  Google Scholar 

  32. Yoshii R, Hirose A, Tanaka K, Chujo Y (2014) Boron diiminate with aggregation-induced emission and crystallization-induced emission enhancement characteristics. Chem Eur J 20:8320–8324

    Article  CAS  Google Scholar 

  33. Yoshii R, Nagai A, Tanaka K, Chujo Y (2013) Highly emissive boron ketoiminate derivatives as new class of aggregation-induced emission fluorophores. Chem Eur J 19:4506–4512

    Article  CAS  Google Scholar 

  34. Suenaga K, Tanaka K, Chujo Y (2017) Heat-resistant mechanoluminescent chromism of the hybrid molecule based on boron ketoiminate-modified octa-substituted polyhedral oligomeric silsesquioxane. Chem Eur J 23:1409–1414

    Article  CAS  Google Scholar 

  35. Yeo H, Tanaka K, Chujo Y (2012) Isolation of π-conjugated system through polyfluorene from electronic coupling with side-chain substituents by cardo structures. J Polym Sci Part A Polym Chem 50:4433–4442

    Article  CAS  Google Scholar 

  36. Yeo H, Tanaka K, Chujo Y (2015) Synthesis of dual-emissive polymers based on ineffective energy transfer through cardo fluorene-containing conjugated polymers. Polymer 60:228–233

    Article  CAS  Google Scholar 

  37. Yeo H, Tanaka K, Chujo Y (2015) Synthesis and energy transfer through heterogeneous dyes-substituted fluorene-containing alternating copolymers and their dual-emission properties. J Polym Sci Part A Polym Chem 53:2026–2035

    Article  CAS  Google Scholar 

  38. Yeo H, Tanaka K, Chujo Y (2016) Tunable optical property between pure red luminescence and dual-emission depended on the length of light-harvesting antennae in the dyads containing the cardo structure of BODIPY and oligofluorene. Macromolecules 49:8899–8904

    Article  CAS  Google Scholar 

  39. Yeo H, Tanaka K, Chujo Y (2013) Effective light-harvesting antennae based on BODIPY-tethered cardo polyfluorenes via rapid energy transferring and low concentration quenching. Macromolecules 46:2599–2605

    Article  CAS  Google Scholar 

  40. Tanaka K, Chujo Y (2012) Advanced luminescent materials based on organoboron polymers. Macromol Rapid Commun 33:1235–1255

    Article  CAS  Google Scholar 

  41. Yoshii R, Nagai A, Tanaka K, Chujo Y (2013) Highly NIR emissive boron di(iso)indomethene (BODIN)-based polymer: drastic change from deep-red to NIR emission via quantitative polymer reaction. J Polym Sci Part A Polym Chem 51:1726–1733

    Article  CAS  Google Scholar 

  42. Tanaka K, Yamane H, Yoshii R, Chujo Y (2013) Efficient light absorbers based on thiophene-fused boron dipyrromethene (BODIPY) dyes. Bioorg Med Chem 21:2715–2719

    Article  CAS  Google Scholar 

  43. Yoshii R, Yamane H, Nagai A, Tanaka K, Taka H, Kita H, Chujo Y (2014) π-Conjugated polymers composed of BODIPY or Aza-BODIPY derivatives exhibiting high electron mobility and low threshold voltage in electron-only devices. Macromolecules 47:2316–2323

    Article  CAS  Google Scholar 

  44. Yoshii R, Yamane H, Tanaka K, Chujo Y (2014) Synthetic strategy for low-band gap oligomers and homopolymers using characteristics of thiophene-fused boron dipyrromethene. Macromolecules 47:3755–3760

    Article  CAS  Google Scholar 

  45. Tanaka K, Yanagida T, Yamane H, Hirose A, Yoshii R, Chujo Y (2015) Liquid scintillators with near infrared emission based on organoboron conjugated polymers. Bioorg Med Chem Lett 25:5331–5334

    Article  CAS  Google Scholar 

  46. Yamane H, Ohtani S, Tanaka K, Chujo Y (2017) Synthesis of furan-substituted Aza-BODIPYs having strong near-infrared emission. Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2017.06.054

    Article  CAS  Google Scholar 

  47. Yamane H, Tanaka K, Chujo Y (2015) Simple and valid strategy for the enhancement of the solid-emissive property based on boron dipyrromethene. Tetrahedron Lett 56:6786–6790

    Article  CAS  Google Scholar 

  48. Yamane H, Ito S, Tanaka K, Chujo Y (2016) Preservation of main-chain conjugation through BODIPY-containing alternating polymers from electronic interactions with side-chain substituents by cardo boron structures. Polym Chem 7:2799–2807

    Article  CAS  Google Scholar 

  49. Vögtle F (1993) Cyclophane chemistry: synthesis, structures and reactions. Wiley, Chichester

    Google Scholar 

  50. Gleiter R, Roers R (2004) Modern cyclophane chemistry. In: Gleiter R, Hopf H (eds) Wiley-VCH. Weinheim, Germany

    Google Scholar 

  51. Cram DJ, Allinger NL (1955) Macro rings. XII. Stereochemical consequences of steric compression in the smallest paracyclophane. J Am Chem Soc 77:6289–6294

    Article  CAS  Google Scholar 

  52. Rowlands GJ (2008) The synthesis of enantiomerically pure [2.2]paracyclophane derivatives. Org Biomol Chem 6:1527–1534

    Article  CAS  Google Scholar 

  53. Vorontsova NV, Rozenberg VI, Sergeeva EV, Vorontsov EV, Starikova ZA, Lyssenko KA, Hopf H (2008) Symmetrically tetrasubstituted [2.2]paracyclophanes: their systematization and regioselective synthesis of several types of bis-bifunctional derivatives by double electrophilic substitution. Chem Eur J 14:4600–4617

    Article  CAS  Google Scholar 

  54. Bazan GC (2007) Novel organic materials through control of multichromophore interactions. J Organomet Chem 72:8615–8635

    Article  CAS  Google Scholar 

  55. Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y (2012) Practical optical resolution of planar chiral pseudo-ortho-disubstituted [2.2]paracyclophane. Chem Lett 41:990–992

    Article  CAS  Google Scholar 

  56. Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y (2012) Through-space conjugated polymers consisting of planar chiral pseudo-ortho-linked [2.2]paracyclophane. Polym Chem 3:2727–2730

    Article  CAS  Google Scholar 

  57. Morisaki Y, Inoshita K, Chujo Y (2014) Planar-chiral through-space conjugated oligomers: synthesis and characterization of chiroptical properties. Chem Eur J 20:8386–8390

    Article  CAS  Google Scholar 

  58. Morisaki Y, Inoshita K, Shibata S, Chujo Y (2015) Synthesis of optically active through-space conjugated polymers consisting of planar chiral [2.2]paracyclophane and quaterthiophene. Polym J 47:278–281

    Article  CAS  Google Scholar 

  59. Morisaki Y, Gon M, Sasamori T, Tokitoh N, Chujo Y (2014) Planar chiral tetrasubstituted [2.2]paracyclophane: optical resolution and functionalization. J Am Chem Soc 136:3350–3353

    Article  CAS  Google Scholar 

  60. Gon M, Morisaki Y, Chujo Y (2015) Optically active cyclic compounds based on planar chiral [2.2]paracyclophane: extension of the conjugated systems and chiroptical properties. J Mater Chem C 3:521–529

    Article  CAS  Google Scholar 

  61. Gon M, Morisaki Y, Chujo Y (2015) Highly emissive optically active conjugated dimers consisting of a planar chiral [2.2]paracyclophane showing circularly polarized luminescence. Eur J Org Chem 2015:7756–7762

    Article  CAS  Google Scholar 

  62. Gon M, Morisaki Y, Sawada R, Chujo Y (2016) Synthesis of optically active, x-shaped, conjugated compounds and dendrimers based on planar chiral [2.2]paracyclophane, leading to highly emissive circularly polarized luminescence. Chem Eur J 22:2291–2298

    Article  CAS  Google Scholar 

  63. Gon M, Kozuka H, Morisaki Y, Chujo Y (2016) Optically active cyclic compounds based on planar chiral [2.2]paracyclophane with naphthalene units. Asian J Org Chem 5:353–359

    Article  CAS  Google Scholar 

  64. Morisaki Y, Sawada R, Gon M, Chujo Y (2016) New types of planar chiral [2.2]paracyclophanes and construction of one-handed double helices. Chem Asian J 11:2524–2527

    Article  CAS  Google Scholar 

  65. Gon M, Sawada R, Morisaki Y, Chujo Y (2017) Enhancement and controlling the signal of circularly polarized luminescence based on a planar chiral tetrasubstituted [2.2]paracyclophane framework in aggregation system. Macromolecules 50:1790–1802

    Article  CAS  Google Scholar 

  66. Gon M, Morisaki Y, Chujo Y (2017) Optically active phenylethene dimers based on planar chiral tetrasubstituted [2.2]paracyclophane. Chem Eur J 23:6323–6329

    Article  CAS  Google Scholar 

  67. Riehl JP, Richardson FS (1986) Circularly polarized luminescence spectroscopy. Chem Rev 86:1–16

    Article  CAS  Google Scholar 

  68. Riehl JP, Muller F (2012) Comprehensive Chiroptical spectroscopy. Wiley, New York

    Google Scholar 

  69. Chow HF, Low KH, Wong KY (2005) An improved method for the regiospecific synthesis of polysubstituted [2.2]paracyclophanes. Synlett 2005:2130–2134

    Google Scholar 

  70. Hinrichs H, Boydston AJ, Jones PG, Hess K, Herges R, Haley MM, Hopf H (2006) Phane properties of [2.2]paracyclophane/dehydrobenzoannulene hybrids. Chem Eur J 12:7103–7115

    Article  CAS  Google Scholar 

  71. Kumar J, Nakashima T, Kawai T (2015) Circularly polarized luminescence in chiral molecules and supramolecular assemblies. J Phys Chem Lett 6:3445–3452

    Article  CAS  Google Scholar 

  72. Morisaki Y, Kawakami N, Nakano T, Chujo Y (2013) Energy-transfer properties of a [2.2]paracyclophane-based through-space dimer. Chem Eur J 19:17715–17718

    Article  CAS  Google Scholar 

  73. Morisaki Y, Kawakami N, Nakano T, Chujo Y (2013) Synthesis and properties of a through-space-conjugated dimer. Chem Lett 43:426–428

    Article  Google Scholar 

  74. Morisaki Y, Kawakami N, Shibata S, Chujo Y (2014) Through-space conjugated molecular wire comprising three π-electron systems. Chem Asian J 9:2891–2895

    Article  CAS  Google Scholar 

  75. Morisaki Y, Shibata S, Chujo Y (2016) [2.2]Paracyclophane-based single molecular wire consisting of four π-electron systems. Can J Chem 95:424–431

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “New Polymeric Materials Based on Element-Blocks (No.2401)” (JSPS KAKENHI Grant Number JP24102013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazuo Tanaka or Yoshiki Chujo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gon, M., Tanaka, K., Chujo, Y. (2019). Element-Block Materials: New Concept for the Development of Advanced Hybrids and Inorganic Polymers. In: Chujo, Y. (eds) New Polymeric Materials Based on Element-Blocks. Springer, Singapore. https://doi.org/10.1007/978-981-13-2889-3_1

Download citation

Publish with us

Policies and ethics