Skip to main content

Automatic Performance Simulation for Microservice Based Applications

  • Conference paper
  • First Online:
Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 946))

Included in the following conference series:

Abstract

As microservices can easily scale up and down to adapt to dynamic workloads, various Internet-based applications adopt the microservice architecture to provide online services. Existing works often model applications’ performance according to historical training data, but they using static models cannot adapt to dynamic workloads and complex applications. To address the above issue, this paper proposes an adaptive automatic simulation approach to evaluate applications’ performance. We first model applications’ performance with a queue-based model, which well represents the correlations between workloads and performance metrics. Then, we predict applications’ response time by adjusting the parameters of the application performance model with an adaptive fuzzy Kalman filter. Thus, we can predict the applications’ performance by simulating various dynamic workloads. Finally, we have deployed a typical microservice based application and simulated workloads in the experiment to validate our approach. Experimental results show that our approach on performance simulation is much more accurate and effective than existing ones in predicting response time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://cloudsuite.ch//pages/benchmarks/webserving/

References

  1. Shanthikumar, J.G., Buzacott, J.A.: Open queueing network models of dynamic job shops. Int. J. Prod. Res. 19(3), 255–266 (1981)

    Article  Google Scholar 

  2. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  3. Sinopoli, B., Schenato, L., Franceschetti, M., et al.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)

    Article  MathSciNet  Google Scholar 

  4. Martinez, J.F., Ipek, E.: Dynamic multicore resource management: a machine learning approach. IEEE Micro 29(5), 8–17 (2009)

    Article  Google Scholar 

  5. Lama, P., Zhou, X.: Autonomic provisioning with self-adaptive neural fuzzy control for end-to-end delay guarantee. In: IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 151–160 (2010)

    Google Scholar 

  6. Lu, C., Lu, Y., Abdelzaher, T.F., et al.: Feedback control architecture and design methodology for service delay guarantees in web servers. IEEE Trans. Parallel Distrib. Syst. 17(9), 1014–1027 (2006)

    Article  Google Scholar 

  7. Lama, P., Guo, Y., Zhou, X.: Autonomic performance and power control for co-located Web applications on virtualized servers. In: IEEE/ACM 21st International Symposium on Quality of Service (IWQoS), pp. 1–10 (2013)

    Google Scholar 

  8. Lama, P., Zhou, X.: Efficient server provisioning with control for end-to-end response time guarantee on multitier clusters. IEEE Trans. Parallel Distrib. Syst. 23(1), 78–86 (2012)

    Article  Google Scholar 

  9. Cao, J., Zhang, W., Tan, W.: Dynamic control of data streaming and processing in a virtualized environment. IEEE Trans. Autom. Sci. Eng. 9(2), 365–376 (2012)

    Article  Google Scholar 

  10. Cherkasova, L., Phaal, P.: Session-based admission control: a mechanism for peak load management of commercial web sites. IEEE Trans. Comput. 51(6), 669–685 (2002)

    Article  Google Scholar 

  11. Robertsson, A., Wittenmark, B., Kihl, M., et al.: Design and evaluation of load control in web server systems. In: Proceedings of IEEE American Control Conference, vol. 3, pp. 1980–1985 (2004)

    Google Scholar 

  12. Xu, C.Z., Rao, J., Bu, X.: URL: a unified reinforcement learning approach for autonomic cloud management. J. Parallel Distrib. Comput. 72(2), 95–105 (2012)

    Article  Google Scholar 

  13. Karlsson, M., Karamanolis, C., Zhu, X.: Triage: performance isolation and differentiation for storage systems. In: IEEE International Workshop on Quality of Service, IWQOS, pp. 67–74 (2004)

    Google Scholar 

  14. Lama, P., Zhou, X.: Autonomic provisioning with self-adaptive neural fuzzy control for percentile-based delay guarantee. ACM Trans. Auton. Adapt. Syst. 8(2), 9 (2013)

    Article  Google Scholar 

  15. Bodík, P., Griffith, R., Sutton, C., et al.: Statistical machine learning makes automatic control practical for internet datacenters. In: Proceedings of Conference on Hot Topics in Cloud Computing, pp. 12–21 (2009)

    Google Scholar 

  16. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)

    Article  Google Scholar 

  17. Daum, F.E.: Extended Kalman Filters. In: Baillieul, J., Samad, T. (eds.) Encyclopedia of Systems and Control. Springer, London (2014). https://doi.org/10.1007/978-1-4471-5058-9_62

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Education of Humanities and Social Science Research (grant 17YJCZH156 and grant 15YJCZH117), the National Social Science Foundation of China (grant 16CXW027), and Fundamental Research Fund for the Central Universities (grant 2014B00514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Meng, L., Liu, P., Zhang, Y., Chan, H. (2018). Automatic Performance Simulation for Microservice Based Applications. In: Li, L., Hasegawa, K., Tanaka, S. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2018. Communications in Computer and Information Science, vol 946. Springer, Singapore. https://doi.org/10.1007/978-981-13-2853-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2853-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2852-7

  • Online ISBN: 978-981-13-2853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics