Skip to main content

Digital Twin-Based Energy Modeling of Industrial Robots

  • Conference paper
  • First Online:
Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 946))

Included in the following conference series:

Abstract

The rapid development of robotic technologies in recent years has made industrial robots (IRs) increasingly used in various manufacturing process, and the energy problem of IRs has been paid great attention because of their massive adoption and intensive energy consumption. Energy saving of IRs therefore is in great demand for environment protection and enterprise cost reduction, and the energy modeling of IRs is the basis to achieve such goal. In this paper, a novel energy modeling method of IRs based on digital twin is proposed and the system framework is established, which mainly includes the physics-based energy model of the physical IRs, the 3D virtual robot model used to visualize and simulate on the energy consumption of IRs, the digital twin data and the ontology-based unified digitized description model for mapping the virtual model to the corresponding physical energy model. Furthermore, the mapping relation between the physical data and ontology attributes is established to enable the interaction between the physical space and the cyber space of the whole system. Finally, the feasibility and effectiveness of the proposed method is validated by a case study, and the results show that the digital twin-based energy modeling method can be efficiently used for the simulation and prediction of the energy consumption of IRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bi, Z.: Revisiting system paradigms from the viewpoint of manufacturing sustainability. Sustainability 3(9), 1323–1340 (2011)

    Article  Google Scholar 

  2. Jovane, F., Yoshikawa, H., Alting, L., et al.: The incoming global technological and industrial revolution towards competitive sustainable manufacturing. CIRP Ann. 57(2), 641–659 (2008)

    Article  Google Scholar 

  3. Paryanto, Brossog, M., Bornschlegl, M., et al.: Reducing the energy consumption of industrial robots in manufacturing systems. Int. J. Adv. Manuf. Technol. 78(5–8), 1315–1328 (2015)

    Google Scholar 

  4. Tavares, P., Silva, J.A., Costa, P., Veiga, G., Moreira, A.P.: Flexible work cell simulator using digital twin methodology for highly complex systems in industry 4.0. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds.) ROBOT 2017. AISC, vol. 693, pp. 541–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70833-1_44

    Chapter  Google Scholar 

  5. Yang, A., Pu, J., Wong, C.B., et al.: By-pass valve control to improve energy efficiency of pneumatic drive system. Control Eng. Pract. 17(6), 623–628 (2009)

    Article  Google Scholar 

  6. Riazi, S., Bengtsson, K., Wigstrom, O., et al.: Energy optimization of multi-robot systems. In: 11th IEEE International Conference on Automation Science and Engineering, pp. 1345–1350. IEEE, Gothenburg (2015)

    Google Scholar 

  7. Paes, K., Dewulf, W., Elst, K.V., et al.: Energy efficient trajectories for an industrial ABB robot. Procedia CIRP 15, 105–110 (2014)

    Article  Google Scholar 

  8. Hansen, C., Oltjen, J., Meike, D., et al.: Enhanced approach for energy-efficient trajectory generation of industrial robots. In: IEEE International Conference on Automation Science and Engineering, pp. 1–7. IEEE, Seoul (2012)

    Google Scholar 

  9. Diken, H.: Energy efficient sinusoidal path planning of robot manipulators. Mech. Mach. Theory 29(6), 785–792 (1994)

    Article  Google Scholar 

  10. Rassolkin, A., Hoimoja, H., Teemets, R.: Energy saving possibilities in the industrial robot IRB 1600 control. In: 7th International Conference-Workshop Compatibility and Power Electronics, pp. 226–229. IEEE, Tallinn (2011)

    Google Scholar 

  11. Smetanova, A.: Optimization of energy by robot movement. Modern Mach. Sci. J. 3(1), 172–176 (2010)

    Google Scholar 

  12. Chemnitz, M., Schreck, G., Krüger, J.: Analyzing energy consumption of industrial robots. In: IEEE 16th Conference on Emerging Technologies and Factory Automation, pp. 1–4. IEEE, Toulouse (2011)

    Google Scholar 

  13. Bjorkenstam, S., Gleeson, D., Bohlin, R., et al.: Energy efficient and collision free motion of industrial robots using optimal control. In: IEEE International Conference on Automation Science and Engineering, pp. 510–515. IEEE, Madison (2013)

    Google Scholar 

  14. Paryanto, Brossog, M., Kohl, J., et al.: Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system. Procedia CIRP 23, 131–136 (2014)

    Google Scholar 

  15. Othman, A., Belda, K., Burget, P.: Physical modelling of energy consumption of industrial articulated robots. In: 15th International Conference on Control, Automation and Systems, pp. 784–789. IEEE, Busan (2015)

    Google Scholar 

  16. Liu, A., Liu, H., Yao, B., et al.: Energy consumption modeling of industrial robot based on simulated power data and parameter identification. Adv. Mech. Eng. 10(5), 1–11 (2018)

    Google Scholar 

  17. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-38756-7_4

    Chapter  Google Scholar 

  18. Tuegel, E.J., Ingraffea, A.R., Eason, T.G., et al.: Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. Eng. 2011, 14 (2011)

    Article  Google Scholar 

  19. Fourgeau, E., Gomez, E., Adli, H., et al.: System engineering workbench for multi-views systems methodology with 3DEXPERIENCE platform. The aircraft RADAR use case. In: Cardin, M.A., Fong, S., Krob, D., Lui, P., Tan, Y. (eds.) Complex Systems Design and Management Asia, pp. 269–270. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29643-2_21

    Chapter  Google Scholar 

  20. Tao, F., Zhang, M., Cheng, J., et al.: Digital twin workshop: a new paradigm for future workshop. Comput. Integr. Manuf. Syst. 23(1), 1–9 (2017)

    Google Scholar 

  21. Tao, F., Cheng, J., Qi, Q., et al.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 94(9–12), 3563–3576 (2018)

    Article  Google Scholar 

  22. Zhang, Q., Zhang, X., Xu, W., Liu, A., Zhou, Z., Pham, D.T.: Modeling of digital twin workshop based on perception data. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 3–14. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_1

    Chapter  Google Scholar 

  23. Kinsheel, A.: Robust least square estimation of the CRS A465 robot arm’s dynamic model parameters. J. Mech. Eng. Res. 4(3), 89–99 (2012)

    Google Scholar 

  24. Daemi, M., Heimann, B.: Identification and compensation of gear friction for modeling of robots. In: Morecki, A., Bianchi, G., Rzymkowski, C. (eds.) ROMANSY 11: Theory and Practice of Robots and Manipulators, pp. 89–96. Springer, Vienna (1997). https://doi.org/10.1007/978-3-7091-2666-0_11

    Chapter  Google Scholar 

Download references

Acknowledgment

This research is supported by National Natural Science Foundation of China (Grant No. 51775399), the Fundamental Research Funds for the Central Universities (Grant No. 2018III034GX), and the Engineering and Physical Sciences Research Council (EPSRC), UK (Grant No. EP/N018524/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, K., Xu, W., Yao, B., Zhou, Z., Pham, D.T. (2018). Digital Twin-Based Energy Modeling of Industrial Robots. In: Li, L., Hasegawa, K., Tanaka, S. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2018. Communications in Computer and Information Science, vol 946. Springer, Singapore. https://doi.org/10.1007/978-981-13-2853-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2853-4_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2852-7

  • Online ISBN: 978-981-13-2853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics