Skip to main content

Physics-Based Computational Design for Digital Fabrication

  • Chapter
  • First Online:
Mathematical Insights into Advanced Computer Graphics Techniques (MEIS 2016, MEIS 2017)

Abstract

Physics-based simulation models have been long studied in computer graphics. The current trend is to capture complex physical phenomena that have multi-physics, multi-scale, and multi-modality. Meanwhile, the advent of digital manufacturing techniques is also striking. The barrier of making objects with complex geometries and materials constantly lowers down. The confluence of numerical simulation models and powerful digital fabrication inspires us to rethink the design of objects that can be digitally manufactured. In this paper, I will present our work on physics-based simulation models and their use in various design tasks. I will show that seamless integration of simulation models into the design process opens the door to optimal, unrealized, and even unconventional product designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Part of this article is reused from [24, 34]. Copyright 2015, 2017 ACM, included here by permission.

References

  1. Aliabadi H, Wen P (2010) Boundary element methods in engineering and sciences. Computational and experimental methods in structures. Imperial College Press, London

    Google Scholar 

  2. Batty C, Uribe A, Audoly B, Grinspun E (2012) Discrete viscous sheets. ACM Trans Graph 31(4)

    Article  Google Scholar 

  3. Bharaj G, Levin DIW, Tompkin J, Fei Y, Pfister H, Matusik W, Zheng C (2015) Computational design of metallophone contact sounds. In: ACM transaction on graphics (SIGGRAPH Asia 2015), vol 34(6), pp 223:1–223:13

    Article  Google Scholar 

  4. Blake W (1986) Mechanics of flow-induced sound and vibration. Academic Press, Amsterdam

    Google Scholar 

  5. Chadwick JN, Zheng C, James DL (2012) Precomputed acceleration noise for improved rigid-body sound. ACM transaction on graphics (Proceedings of SIGGRAPH 2012), vol 31(4)

    Article  Google Scholar 

  6. Cremer L, Heckl M, Ungar E (1990) Structure-Borne sound: structural vibrations and sound radiation at audio frequencies, 2nd edn. Springer, Berlin

    Google Scholar 

  7. Fei YR, Maia HT, Batty C, Zheng C, Grinspun E (2017) A multi-scale model for simulating liquid-hair interactions. ACM Trans Graph 36(4)

    Article  Google Scholar 

  8. Fletcher NH (1999) The nonlinear physics of musical instruments. Rep Prog Phys 62(5):723

    Article  Google Scholar 

  9. Funkhouser T, Tsingos N, Jot JM (2003) Survey of methods for modeling sound propagation in interactive virtual environment systems. In: Presence

    Google Scholar 

  10. Funkhouser TA, Min P, Carlbom I (1999) Real-time acoustic modeling for distributed virtual environments. In: Proceedings of SIGGRAPH 99, computer graphics proceedings, annual conference series, pp 365–374

    Google Scholar 

  11. Gaul L, Kogl M, Wagner M (2002) Boundary element methods for engineers and scientists. An introductory course with advanced topics. Springer, Berlin

    Google Scholar 

  12. Gingold Y, Secord A, Han JY, Grinspun E, Zorin D (2004) A discrete model for inelastic deformation of thin shells. In: Proceedings of SCA’04

    Google Scholar 

  13. Gumerov NA, Duraiswami R (2004) Fast multipole methods for the Helmholtz equation in three dimensions, 1st edn. Elsevier Science, New York

    Chapter  Google Scholar 

  14. Gumerov NA, Duraiswami R (2006) FMM accelerated BEM for 3d laplace and Helmholtz equations. In: Proceedings of international conference on boundary element techniques

    Google Scholar 

  15. Hašan M, Fuchs M, Matusik W, Pfister H, Rusinkiewicz S (2010) Physical reproduction of materials with specified subsurface scattering. ACM Trans Graph 29(4):61:1–61:10

    Google Scholar 

  16. Jackson GW, James DF (1986) The permeability of fibrous porous media. Can J Chem Eng 64(3):364–374

    Article  Google Scholar 

  17. James DL, Barbic J, Pai DK (2006) Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans Graph 25(3):987–995

    Article  Google Scholar 

  18. Jensen HW, Marschner SR, Levoy M, Hanrahan P (2001) A practical model for subsurface light transport. In: SIGGRAPH (2001)

    Google Scholar 

  19. Jiang C, Schroeder C, Selle A, Teran J, Stomakhin A (2015) The affine particle-in-cell method. ACM Trans Graph (TOG) 34(4):51

    MATH  Google Scholar 

  20. Langlois TR, Zheng C, James DL (2016) Toward animating water with complex acoustic bubbles. ACM Trans Graph (SIGGRAPH 2016) 35(4)

    Article  Google Scholar 

  21. Leighton T (1994) The acoustic bubble. Academic Press, Cambridge

    Chapter  Google Scholar 

  22. Li D, Fei Y, Zheng C (2015) Interactive acoustic transfer approximation for modal sound. ACM Trans Graph 35(1):2:1–2:16

    MathSciNet  Google Scholar 

  23. Li D, Levin DI, Matusik W, Zheng C (2016) Acoustic voxels: computational optimization of modular acoustic filters. ACM Trans Graph (SIGGRAPH 2016) 35(4)

    Google Scholar 

  24. Li D, Nair AS, Nayar SK, Zheng C (2017) Aircode: unobtrusive physical tags for digital fabrication. In: Proceedings of the 30th annual symposium on user interface software and technology, UIST ’17. ACM, New York, USA

    Google Scholar 

  25. Liu YJ (2009) Fast multipole boundary element method: theory and applications in engineering. Cambridge University, Cambridge

    Google Scholar 

  26. Mehra R, Raghuvanshi N, Antani L, Chandak A, Curtis S, Manocha D (2013) Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Trans Graph 32(2):19:1–19:13

    Article  Google Scholar 

  27. Moss W, Yeh H, Hong JM, Lin MC, Manocha D (2010) Sounding liquids: automatic sound synthesis from fluid simulation. ACM Trans Graph 29(3):21:1–21:13

    Article  Google Scholar 

  28. Ochmann M (1995) The source simulation technique for acoustic radiation problems. Acustica 81:512

    Google Scholar 

  29. Ochmann M (1999) The full-field equations for acoustic radiation and scattering. J Acoust Soc Am 105(5)

    Article  Google Scholar 

  30. Raghuvanshi N, Snyder J, Mehra R, Lin M, Govindaraju N (2010) Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Trans Graph 29(4):68:1–68:11

    Article  Google Scholar 

  31. Shabana AA (1990) Theory of vibration, volume II: discrete and continuous systems, 1st edn. Springer, New York

    Google Scholar 

  32. Song Y, Tong X, Pellacini F, Peers P (2009) Subedit: a representation for editing measured heterogeneous subsurface scattering. ACM Trans Graph

    Google Scholar 

  33. Tsingos N, Funkhouser T, Ngan A, Carlbom I (2001) Modeling acoustics in virtual environments using the uniform theory of diffraction. In: Proceedings of ACM SIGGRAPH 2001, computer graphics proceedings, annual conference series, pp 545–552

    Google Scholar 

  34. Zhang Y, Yin C, Zheng C, Zhou K (2015) Computational hydrographic printing. In: ACM transactions on graphics (Proceedings of SIGGRAPH 2015), vol 34(4)

    Google Scholar 

  35. Zheng C, James DL (2009) Harmonic fluids. ACM Trans Graph (SIGGRAPH 2009) 28(3):37:1–37:12

    Article  Google Scholar 

  36. Zheng C, James DL (2010) Rigid-body fracture sound with precomputed soundbanks. ACM Trans Graph (SIGGRAPH 2010) 29(4):1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxi Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, C. (2019). Physics-Based Computational Design for Digital Fabrication. In: Dobashi, Y., Kaji, S., Iwasaki, K. (eds) Mathematical Insights into Advanced Computer Graphics Techniques. MEIS MEIS 2016 2017. Mathematics for Industry, vol 32. Springer, Singapore. https://doi.org/10.1007/978-981-13-2850-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2850-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2849-7

  • Online ISBN: 978-981-13-2850-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics