Skip to main content

Signal Transduction Pathways in Ageing

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 90))

Abstract

It is now widely recognised that ageing and its associated functional decline are regulated by a wide range of molecules that fit into specific cellular pathways. Here, we describe several of the evolutionary conserved cellular signalling pathways that govern organismal ageing and discuss how their identification, and work on the individual molecules that contribute to them, has aided in the design of therapeutic strategies to alleviate the adverse effects of ageing and age-related disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alic N et al (2011a) Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling. Mol Syst Biol 7:502–502

    Article  PubMed  PubMed Central  Google Scholar 

  • Alic N, Hoddinott MP, Vinti G, Partridge L (2011b) Lifespan extension by increased expression of the Drosophila homologue of the IGFBP7 tumour suppressor. Aging Cell 10:137–147

    Article  CAS  PubMed  Google Scholar 

  • Alic N, Giannakou ME, Papatheodorou I, Hoddinott MP, Andrews TD, Bolukbasi E, Partridge L (2014a) Interplay of dFOXO and two ETS-family transcription factors determines lifespan in Drosophila melanogaster. PLoS Genet 10:e1004619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alic N et al (2014b) Cell-nonautonomous effects of dFOXO/DAF-16 in aging. Cell Rep 6:608–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  CAS  PubMed  Google Scholar 

  • An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An JH, Vranas K, Lucke M, Inoue H, Hisamoto N, Matsumoto K, Blackwell TK (2005) Regulation of the caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Proc Natl Acad Sci U S A 102:16275–16280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andziak B, Buffenstein R (2006) Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell 5:525–532

    Article  CAS  PubMed  Google Scholar 

  • Anisimov VN et al (2011) Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10:4230–4236

    Article  CAS  PubMed  Google Scholar 

  • Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18:3004–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker WJ et al (2007) Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol 27:3839–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal A et al (2014) Transcriptional regulation of caenorhabditis elegans FOXO/DAF-16 modulates lifespan. Longev Healthspan 3:5–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartke A et al (2000) Growth hormone and aging. Age 23:219–225

    Article  CAS  Google Scholar 

  • Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA (2016) Metformin as a tool to target aging. Cell Metab 23:1060–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Sahra I, Manning BD (2017) mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol 45:72–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12:487–502

    Article  CAS  PubMed  Google Scholar 

  • Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447:545–549

    Article  CAS  PubMed  Google Scholar 

  • Biteau B, Hochmuth CE, Jasper H (2008) JNK activity in somatic stem cells causes loss of tissue homeostasis in the aging Drosophila gut. Cell Stem Cell 3:442–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biteau B, Karpac J, Supoyo S, DeGennaro M, Lehmann R, Jasper H (2010) Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet 6:e1001159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bitto A et al (2016) Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. elife 5:e16351

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M (2015) SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88:1–12

    Article  CAS  Google Scholar 

  • Blagosklonny MV (2006) Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 5:2087–2102

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2007) Paradoxes of aging. Cell Cycle 6:2997–3003

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2008) Aging: ROS or TOR. Cell Cycle 7:3344–3354

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2012) Answering the ultimate question “what is the proximal cause of aging?”. Aging 4:861–877

    Article  PubMed  PubMed Central  Google Scholar 

  • Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    Article  CAS  PubMed  Google Scholar 

  • Borras C et al (2011) RasGrf1 deficiency delays aging in mice. Aging 3:262–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broughton SJ et al (2005) Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc Natl Acad Sci U S A 102:3105–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown-Borg HM, Rakoczy SG, Sharma S, Bartke A (2009) Long-living growth hormone receptor knockout mice: potential mechanisms of altered stress resistance. Exp Gerontol 44:10–19

    Article  CAS  PubMed  Google Scholar 

  • Brunner D, Ducker K, Oellers N, Hafen E, Scholz H, Klambt C (1994) The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature 370:386–389

    Article  CAS  PubMed  Google Scholar 

  • Bruns DR, Drake JC, Biela LM, Peelor FF, Miller BF, Hamilton KL (2015) Nrf2 Signaling and the slowed aging phenotype: evidence from long-lived models. Oxid Med Cell Longev 2015:1–15

    Article  CAS  Google Scholar 

  • Budanov AV, Karin M (2008) The p53-regulated Sestrin gene products inhibit mTOR signaling. Cell 134:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buffenstein R (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B 178:439–445

    Article  PubMed  Google Scholar 

  • Carling D (2017) AMPK signalling in health and disease. Curr Opin Cell Biol 45:31–37

    Article  CAS  PubMed  Google Scholar 

  • Carriere A et al (2011) ERK1/2 phosphorylate raptor to promote ras-dependent activation of mTOR complex 1 (mTORC1). J Biol Chem 286:567–577

    Article  CAS  PubMed  Google Scholar 

  • Castellano E, Downward J (2011) RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2:261–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandarlapaty S et al (2011) AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19:58–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2:ra75

    PubMed  PubMed Central  Google Scholar 

  • Chen C-C et al (2010) FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and rictor. Dev Cell 18:592–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D et al (2013) Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans. Cell Rep 5:1600–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7:436–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clancy DJ et al (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  CAS  PubMed  Google Scholar 

  • Conover CA, Bale LK (2007) Loss of pregnancy-associated plasma protein A extends lifespan in mice. Aging Cell 6:727–729

    Article  CAS  PubMed  Google Scholar 

  • Costanzo-Garvey DL et al (2009) KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab 10:366–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csiszar A et al (2014) Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. AJP Heart Circ Physiol 307:H292–H306

    Article  CAS  Google Scholar 

  • Curtis R, O’Connor G, DiStefano PS (2006) Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5:119–126

    Article  CAS  PubMed  Google Scholar 

  • Davinelli S, Willcox DC, Scapagnini G (2012) Extending healthy ageing: nutrient sensitive pathway and centenarian population. Immun Ageing 9:9–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodson M, Redmann M, Rajasekaran Namakkal S, Darley-Usmar V, Zhang J (2015) KEAP1–NRF2 signalling and autophagy in protection against oxidative and reductive proteotoxicity. Biochem J 469:347–355

    Article  CAS  PubMed  Google Scholar 

  • Edrey YH et al (2012) Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity. Aging Cell 11:213–222

    Article  CAS  PubMed  Google Scholar 

  • Eijkelenboom A et al (2013) Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Mol Syst Biol 9:638–638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elbourkadi N, Austad SN, Miller RA (2014) Fibroblasts from long-lived species of mammals and birds show delayed, but prolonged, phosphorylation of ERK. Aging Cell 13:283–291

    Article  CAS  PubMed  Google Scholar 

  • Erdogan CS, Hansen BW, Vang O (2016) Are invertebrates relevant models in ageing research? Focus on the effects of rapamycin on TOR. Mech Ageing Dev 153:22–29

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio P, Liou LL, Moy VN, Diaspro A, Valentine JS, Gralla EB, Longo VD (2003) SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163:35–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes de Abreu DA et al (2014) An insulin-to-insulin regulatory network orchestrates phenotypic specificity in development and physiology. PLoS Genet 10:e1004225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandez-Medarde A, Santos E (2011) The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim Biophys Acta 1815:170–188

    CAS  PubMed  Google Scholar 

  • Flynn JM et al (2013) Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12:851–862

    Article  CAS  PubMed  Google Scholar 

  • Foukas LC et al (2013) Long-term p110α PI3K inactivation exerts a beneficial effect on metabolism. EMBO Mol Med 5:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funakoshi M, Tsuda M, Muramatsu K, Hatsuda H, Morishita S, Aigaki T (2011) A gain-of-function screen identifies wdb and lkb1 as lifespan-extending genes in Drosophila. Biochem Biophys Res Commun 405:667–672

    Article  CAS  PubMed  Google Scholar 

  • Gaubitz C, Prouteau M, Kusmider B, Loewith R (2016) TORC2 structure and function. Trends Biochem Sci 41:532–545

    Article  CAS  PubMed  Google Scholar 

  • Gems D, de la Guardia Y (2013) Alternative perspectives on aging in caenorhabditis elegans: reactive oxygen species or hyperfunction? Antioxid Redox Signal 19:321–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644

    Article  CAS  PubMed  Google Scholar 

  • Gems D, Pletcher S, Partridge L (2002) Interpreting interactions between treatments that slow aging. Aging Cell 1:1–9

    Article  CAS  PubMed  Google Scholar 

  • Giannakou ME, Goss M, Jünger MA, Hafen E, Leevers SJ, Partridge L (2004) Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305:361–361

    Article  CAS  PubMed  Google Scholar 

  • Golden TR, Beckman KB, Lee AHJ, Dudek N, Hubbard A, Samper E, Melov S (2007) Dramatic age-related changes in nuclear and genome copy number in the nematode Caenorhabditis elegans. Aging Cell 6:179–188

    Article  CAS  PubMed  Google Scholar 

  • Greer EL et al (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17:1646–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grönke S, Clarke D-F, Broughton S, Andrews TD, Partridge L (2010) Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet 6:e1000857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gwinn DM et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halfon MS, Carmena A, Gisselbrecht S, Sackerson CM, Jimenez F, Baylies MK, Michelson AM (2000) Ras pathway specificity is determined by the integration of multiple signal-activated and tissue-restricted transcription factors. Cell 103:63–74

    Article  CAS  PubMed  Google Scholar 

  • Halloran J et al (2012) Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 223:102–113

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2014) AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr 34:31–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG (2016) Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 6:1–19

    Article  Google Scholar 

  • Harrison DE et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay N (2011) Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta 1813:1965–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    Article  CAS  PubMed  Google Scholar 

  • Herndon LA et al (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419:808–814

    Article  CAS  PubMed  Google Scholar 

  • Holzenberger M et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  CAS  PubMed  Google Scholar 

  • Honegger B, Galic M, Köhler K, Wittwer F, Brogiolo W, Hafen E, Stocker H (2008) Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 7:10–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang J, Manning BD (2009) A complex interplay between Akt, TSC2, and the two mTOR complexes. Biochem Soc Trans 37:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutter D, Yo Y, Chen W, Liu P, Holbrook NJ, Roth GS, Liu Y (2000) Age-related decline in Ras/ERK mitogen-activated protein kinase cascade is linked to a reduced association between Shc and EGF receptor. J Gerontol Ser A Biol Med Sci 55:B125–B134

    Article  CAS  Google Scholar 

  • Hwangbo DS, Gersham B, Tu M-P, Palmer M, Tatar M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Zhu T, Guan K-L (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  • Itoh K et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jazwinski SM (1999) The RAS genes: a homeostatic device in Saccharomyces cerevisiae longevity☆. Neurobiol Aging 20:471–478

    Article  CAS  PubMed  Google Scholar 

  • Jazwinski SM et al (2010) HRAS1 and LASS1 with APOE are associated with human longevity and healthy aging. Aging Cell 9:698–708

    Article  CAS  PubMed  Google Scholar 

  • Jia K (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906

    CAS  PubMed  Google Scholar 

  • Jud M, Razelun J, Bickel J, Czerwinski M, Schisa JA (2007) Conservation of large foci formation in arrested oocytes of Caenorhabditis nematodes. Dev Genes Evol 217:221–226

    Article  PubMed  Google Scholar 

  • Junger MA et al (2003) The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol 2:20–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Kansanen E, Kuosmanen SM, Leinonen H, Levonen A-L (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuoka F, Motohashi H, Engel JD, Yamamoto M (2005a) Nrf2 transcriptionally activates the mafG Gene through an antioxidant response element. J Biol Chem 280:4483–4490

    Article  CAS  PubMed  Google Scholar 

  • Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, Yamamoto M (2005b) Genetic evidence that small Maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol 25:8044–8051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon C (2010) A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann N Y Acad Sci 1204:156–162

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C (2011) The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond Ser B Biol Sci 366:9–16

    Article  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  • Kerr F et al (2017) Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer’s disease. PLoS Genet 13:e1006593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim J, Cha Y-N, Surh Y-J (2010) A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res Fundam Mol Mech Mutagen 690:12–23

    Article  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  CAS  PubMed  Google Scholar 

  • Kodiha M, Rassi JG, Brown CM, Stochaj U (2007) Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEK→ERK1/2 pathway. Am J Physiol Cell Physiol 293:C1427–C1436

    Article  CAS  PubMed  Google Scholar 

  • Kurosu H et al (2005) Suppression of aging in mice by the Hormone Klotho. Science 309:1829–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak M-K, Itoh K, Yamamoto M, Kensler TW (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol 22:2883–2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon ES, Narasimhan SD, Yen K, Tissenbaum HA (2010) A new DAF-16 isoform regulates longevity. Nature 466:498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH et al (2010) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327:1223–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Mele J, Wu Y, Buffenstein R, Hornsby PJ (2010) Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell 9:626–635

    Article  CAS  PubMed  Google Scholar 

  • Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145

    Article  CAS  PubMed  Google Scholar 

  • Long X, Spycher C, Han ZS, Rose AM, Müller F, Avruch J (2002) TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol 12:1448–1461

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Cotarelo P et al (2015) A novel MEK-ERK-AMPK signaling axis controls chemokine receptor CCR7-dependent survival in human mature dendritic cells. J Biol Chem 290:827–840

    Article  CAS  PubMed  Google Scholar 

  • Mair W, Morantte I, Rodrigues APC, Manning G, Montminy M, Shaw RJ, Dillin A (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470:404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder S et al (2012) Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1beta and enhancing NMDA signaling. Aging Cell 11:326–335

    Article  CAS  PubMed  Google Scholar 

  • Mannick JB et al (2014) mTOR inhibition improves immune function in the elderly. Sci Transl Med 6:268ra179

    Article  PubMed  CAS  Google Scholar 

  • McGinnis N, Ragnhildstveit E, Veraksa A, McGinnis W (1998) A cap ‘n’ collar protein isoform contains a selective Hox repressor function. Development 125:4553–4564

    CAS  PubMed  Google Scholar 

  • Mirisola MG, Longo VD (2011) Conserved role of Ras-GEFs in promoting aging: from yeast to mice. Aging 3:340–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    Article  CAS  PubMed  Google Scholar 

  • Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557

    Article  CAS  PubMed  Google Scholar 

  • Murphy CT et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283

    Article  CAS  PubMed  Google Scholar 

  • Murphy CT, Lee S-J, Kenyon C (2007) Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proc Natl Acad Sci U S A 104:19046–19050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthusamy VR et al (2012) Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol Med 52:366–376

    Article  CAS  PubMed  Google Scholar 

  • Nanji M, Hopper NA, Gems D (2005) LET-60 RAS modulates effects of insulin/IGF-1 signaling on development and aging in Caenorhabditis elegans. Aging Cell 4:235–245

    Article  CAS  PubMed  Google Scholar 

  • Nojima A et al (2013) Haploinsufficiency of akt1 prolongs the lifespan of mice. PLoS One 8:e69178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill EM, Rebay I, Tjian R, Rubin GM (1994) The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78:137–147

    Article  PubMed  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  CAS  PubMed  Google Scholar 

  • Orme MH, Alrubaie S, Bradley GL, Walker CD, Leevers SJ (2006) Input from Ras is required for maximal PI(3)K signalling in Drosophila. Nat Cell Biol 8:1298–1302

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Molina A et al (2012) Pten positively regulates brown adipose function, energy expenditure, and longevity. Cell Metab 15:382–394

    Article  CAS  PubMed  Google Scholar 

  • Paik JH et al (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128:309–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119

    Article  CAS  PubMed  Google Scholar 

  • Pan CL, Peng CY, Chen CH, McIntire S (2011) Genetic analysis of age-dependent defects of the Caenorhabditis elegans touch receptor neurons. Proc Natl Acad Sci U S A 108:9274–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlikowska L et al (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8:460–472

    Article  CAS  PubMed  Google Scholar 

  • Pearson KJ et al (2008) Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci U S A 105:2325–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plowman SJ et al (2006) The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice. Exp Cell Res 312:16–26

    Article  CAS  PubMed  Google Scholar 

  • Puig O, Tjian R (2005) Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev 19:2435–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig O, Marr MTM, Ruhf ML, Tjian R (2003) Control of cell number by Drosophila FOXO : downstream and feedback regulation of the insulin receptor pathway. Genes Dev 17:2006–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi W, Huang X, Neumann-Haefelin E, Schulze E, Baumeister R (2012) Cell-nonautonomous signaling of FOXO/DAF-16 to the stem cells of Caenorhabditis elegans. PLoS Genet 8:e1002836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauen KA (2007) HRAS and the costello syndrome. Clin Genet 71:101–108

    Article  CAS  PubMed  Google Scholar 

  • Riera CE et al (2014) TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling. Cell 157:1023–1036

    Article  CAS  PubMed  Google Scholar 

  • Ritter AD et al (2013) Complex expression dynamics and robustness in C. elegans insulin networks. Genome Res 23:954–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robida-Stubbs S et al (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11:230–241

    Article  CAS  PubMed  Google Scholar 

  • Salomon RN, Rob Jackson F (2008) Tumors of testis and midgut in aging flies. Fly 2:265–268

    Article  PubMed  Google Scholar 

  • Sarbassov DD et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168

    Article  CAS  PubMed  Google Scholar 

  • Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster E et al (2010) DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO. Mol Syst Biol 6:399–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Selman C et al (2007) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22:807–818

    Article  PubMed  CAS  Google Scholar 

  • Selman C et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheaffer KL, Updike DL, Mango SE (2008) The target of rapamycin (TOR) pathway antagonizes pha-4/FoxA to control development and aging. Curr Biol 18:1355–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showkat M, Beigh MA, Andrabi KI (2014) mTOR signaling in protein translation regulation: implications in cancer genesis and therapeutic interventions. Mol Biol Int 2014:686984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slack C, Giannakou ME, Foley A, Goss M, Partridge L (2011) dFOXO-independent effects of reduced insulin-like signaling in Drosophila. Aging Cell 10:735–748

    Article  CAS  PubMed  Google Scholar 

  • Slack C, Alic N, Foley A, Cabecinha M, Hoddinott MP, Partridge L (2015) The Ras-Erk-ETS-signaling pathway is a drug target for longevity. Cell 162:72–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steelman LS et al (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging 3:192–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenesen D et al (2013) Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 17:101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg PW, Han M (1998) Genetics of RAS signaling in C. elegans. Trends Genet 14:466–472

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Kale SP, Childress AM, Pinswasdi C, Jazwinski SM (1994) Divergent roles of RAS1 and RAS2 in yeast longevity. J Biol Chem 269:18638–18645

    CAS  PubMed  Google Scholar 

  • Sun LY, Steinbaugh MJ, Masternak MM, Bartke A, Miller RA (2009) Fibroblasts from long-lived mutant mice show diminished ERK1/2 phosphorylation but exaggerated induction of immediate early genes. Free Radic Biol Med 47:1753–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L et al (2015) FOXO3 variants are beneficial for longevity in Southern Chinese living in the Red River Basin: a case-control study and meta-analysis. Sci Rep 5:9852–9852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sykiotis GP, Bohmann D (2008) Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell 14:76–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykiotis GP, Bohmann D (2010) Stress-activated cap‘n’collar transcription factors in aging and human disease. Sci Signal 3:re3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taguchi A, Wartschow LM, White MF (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317:369–372

    Article  CAS  PubMed  Google Scholar 

  • Tan PB, Lackner MR, Kim SK (1998) MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction. Cell 93:569–580

    Article  CAS  PubMed  Google Scholar 

  • Tank EMH, Rodgers KE, Kenyon C (2011) Spontaneous age-related neurite branching in caenorhabditis elegans. J Neurosci 31:9279–9288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  CAS  PubMed  Google Scholar 

  • Teleman AA, Chen YW, Cohen SM (2005) Drosophila melted modulates FOXO and TOR activity. Dev Cell 9:271–281

    Article  CAS  PubMed  Google Scholar 

  • Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1:140–152

    Article  CAS  PubMed  Google Scholar 

  • Tsai S et al (2015) Muscle-specific 4E-BP1 signaling activation improves metabolic parameters during aging and obesity. J Clin Investig 125:2952–2964

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsunekawa S, Demozay D, Briaud I, McCuaig J, Accili D, Stein R, Rhodes CJ (2011) FoxO feedback control of basal IRS-2 expression in pancreatic β-cells is distinct from that in hepatocytes. Diabetes 60:2883–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tullet JMA et al (2008) Direct Inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132:1025–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tullet JM et al (2014) DAF-16/FoxO directly regulates an atypical AMP-activated protein kinase gamma isoform to mediate the effects of insulin/IGF-1 signaling on aging in caenorhabditis elegans. PLoS Genet 10:e1004109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tullet JMA et al (2017) The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell 16:1191–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulgherait M, Rana A, Rera M, Graniel J, Walker DW (2014) AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep 8:1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urfer SR, Kaeberlein TL, Mailheau S, Bergman PJ, Creevy KE, Promislow DEL, Kaeberlein M (2017) A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. GeroScience 39:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620–620

    Article  CAS  PubMed  Google Scholar 

  • White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40:S2–S17

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson JE et al (2012) Rapamycin slows aging in mice. Aging Cell 11:675–682

    Article  CAS  PubMed  Google Scholar 

  • Willcox BJ et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 105:13987–13992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–398

    Article  Google Scholar 

  • Yang J-Y et al (2008) ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 10:138–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S-C et al (2014) Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis. Asian J Androl 16:446–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy Slack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Slack, C., Tullet, J. (2018). Signal Transduction Pathways in Ageing. In: Harris, J., Korolchuk, V. (eds) Biochemistry and Cell Biology of Ageing: Part I Biomedical Science. Subcellular Biochemistry, vol 90. Springer, Singapore. https://doi.org/10.1007/978-981-13-2835-0_11

Download citation

Publish with us

Policies and ethics