Skip to main content

An Orthogonal Genetic Algorithm with Multi-parent Multi-point Crossover for Knapsack Problem

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 952))

Abstract

According to the inherent feature of knapsack problem, a multi-parent multi-point crossover operation (MP2X) is proposed, which is implanted with orthogonal experimental design method. The aim of implementing orthogonal experimental design method to MP2X operation is to fully utilizing the inherent information from multiple component of multiple individuals. Based on MP2X operation and orthogonal design method, a genetic algorithm variant (MPXOGA) is proposed in this paper. The simulation results on classic knapsack instances show that MPXOGA is better than several other solvers, including Hybrid Genetic Algorithm (HGA), Greedy Genetic Algorithm (GGA), Greedy Binary Particle Swarm Optimization Algorithm (GBPSOA) and Very Greedy PSO (VGPSO) in the ability of finding optimal solution, the efficiency and the robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  2. Lim, T.Y., Al-Betar, M.A., Khader, A.T.: Taming the 0/1 knapsack problem with monogamous pairs genetic algorithm. Expert Syst. Appl. 54, 241–250 (2016)

    Article  Google Scholar 

  3. Patvardhan, C., Bansal, S., Srivastav, A.: Parallel improved quantum inspired evolutionary algorithm to solve large size quadratic knapsack problems. Swarm Evol. Comput. 26, 175–190 (2016)

    Article  Google Scholar 

  4. Zhan, Z.H., Li, J., Cao, J., Zhang, J., Chung, H.S.: Multiple populations for multiple objectives: a coevolutionary technique for solving multi-objective optimization problems. IEEE Trans. Syst. Man 43(2), 445–463 (2012)

    Google Scholar 

  5. He, Y.C., Liu, K.Q., Zhang, C.J.: Greedy genetic algorithm for solving knapsack problem and its application use. Comput. Eng. Des. 28(11), 2655–2657 (2007)

    Google Scholar 

  6. Zhao, X.C., Yang, T.T.: Very greedy particle swarm optimization algorithm for knapsack problem. Comput. Eng. Appl. 45(36), 32–34 (2009)

    Google Scholar 

  7. Ye, Y.C., Che, L.X., He, B.: A hybrid particle swarm optimization algorithm for solving 0/1 knapsack problem. J. Changsha Electr. Power Coll. 21(4), 87–90 (2006)

    MATH  Google Scholar 

  8. Li, Y.L., Zhan, Z.H., Gong, Y.J., Chen, W.N., Zhang, J.: Differential evolution with an evolution path: a deep evolutionary algorithm. IEEE Trans. Cybern. 45(9), 1798–1810 (2015)

    Article  Google Scholar 

  9. Leung, Y.W., Wang, Y.P.: An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Trans. Evol. Comput. 5(1), 41–53 (2001)

    Article  Google Scholar 

  10. Yang, Q., Chen, W.N., Li, Y., Chen, C.L., Xu, X.M.: Multimodal estimation of distribution algorithms. IEEE Trans. Cybern. 47(3), 636–650 (2017)

    Article  Google Scholar 

  11. Wang, Y., Liu, H., Cai, Z., Zhou, Y.: An orthogonal design based constrained evolutionary optimization algorithm. Eng. Optimiz. 39(6), 715–736 (2007)

    Article  MathSciNet  Google Scholar 

  12. Montgomery, D.C.: Design and Analysis of Experiments, 3rd edn. Wiley, New York (1991)

    MATH  Google Scholar 

  13. Kalashnikov, V.V., Pérez-Valdés, G.A., Tomasgard, A., Kalashnykova, N.I.: Natural gas cash-out problem: bilevel stochastic optimization approach. Eur. J. Oper. Res. 206(1), 18–33 (2010)

    Article  MathSciNet  Google Scholar 

  14. Li, H., Jiao, Y.C., Zhang, L.: Orthogonal genetic algorithm for solving quadratic bilevel programming problems. J. Syst. Eng. Electron. 21(5), 763–770 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (71772060, 61375066). We will express our awfully thanks to the Swarm Intelligence Research Team of BeiYou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinchao Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Chen, J., Li, R., Gong, D., Li, X. (2018). An Orthogonal Genetic Algorithm with Multi-parent Multi-point Crossover for Knapsack Problem. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 952. Springer, Singapore. https://doi.org/10.1007/978-981-13-2829-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2829-9_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2828-2

  • Online ISBN: 978-981-13-2829-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics