Skip to main content

Complex Logic Circuit of Three-Input and Nine-Output by DNA Strand Displacement

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 952))

  • 818 Accesses

Abstract

In recent years, DNA strand displacement technology has developed rapidly with the advantages of high-performance parallel computing and large information capacity. DNA strand displacement technology is a dynamic DNA nanotechnology developed on the basis of DNA self-assembly technology. DNA strand displacement technology can realize dynamic connection between input signal and output signal, and it is a method for constructing logic gates and logic circuits. According to the basic principle of DNA strand displacement, this paper studies the specific function of the molecular logic circuit model, and constructs a logic circuit with three input and nine output. Then a biochemical logic circuit is built based on the dual-rail thought and the construction of seesaw gate. Finally, DNA strand displacement simulation platform Visual DSD is used to verify the rationality of the model. It lays the foundation for constructing complex logic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grzelczak, M., Vermant, J., Furst, E.M., Liz-Marzan, L.M.: Directed self-assembly of nanoparticles. ACS Nano 4(7), 3591–3605 (2010)

    Article  Google Scholar 

  2. Modi, S., Bhatia, D., Simmel, F.C., Krishnan, Y.: Structural DNA nanotechnology: from bases to bricks, from structure to function. J. Phys. Chem. Lett. 1(13), 1994–2005 (2010)

    Article  Google Scholar 

  3. Wing, J.M.: Computational thinking and thinking about computing. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 366(1881), 3717–3725 (2008)

    Article  MathSciNet  Google Scholar 

  4. Kitano, H.: Computational systems biology. Nature 420(6912), 206 (2002)

    Article  Google Scholar 

  5. Ezziane, Z.: DNA computing: applications and challenges. Nanotechnology 17(2), R27 (2005)

    Article  Google Scholar 

  6. Bakar, R.B.A., Watada, J., Pedrycz, W.: DNA approach to solve clustering problem based on a mutual order. Biosystems 91(1), 1–12 (2008)

    Article  Google Scholar 

  7. Seeman, N.C.: DNA in a material world. Nature 421(6921), 427 (2003)

    Article  MathSciNet  Google Scholar 

  8. Thiruvengadathan, R., Korampally, V., Ghosh, A., Chanda, N., Gangopadhyay, K., Gangopadhyay, S.: Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep. Progress Phys. 76(6), 066501 (2013)

    Article  Google Scholar 

  9. Amodio, A., Zhao, B., Porchetta, A., Idili, A., Castronovo, M., Fan, C.: Rational design of pH-controlled DNA strand displacement. J. Am. Chem. Soc. 136(47), 16469–16472 (2014)

    Article  Google Scholar 

  10. Orbach, R., Guo, W., Wang, F., Iioubasherski, O., Willner, I.: Self-assembly of luminescent Ag nanocluster-functionalized nanowires. Langmuir 29(42), 13066–13071 (2013)

    Article  Google Scholar 

  11. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103 (2011)

    Article  Google Scholar 

  12. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  13. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368 (2011)

    Article  Google Scholar 

  14. Linko, V., Dietz, H.: The enabled state of DNA nanotechnology. Curr. Opin. Biotechnol. 24(4), 555–561 (2013)

    Article  Google Scholar 

  15. Lin, J., Dyer, C.: Data-intensive text processing with mapreduce. Synth. Lect. Hum. Lang. Technol. 3(1), 1–177 (2010)

    Article  Google Scholar 

  16. Ito, H., Konishi, R., Nakada, H., Tsuboi, H., Okuyama, Y., Nagoya, A.: Dynamically reconfigurable logic LSI: PCA-2. IEICE Trans. Inf. Syst. 87(8), 2011–2020 (2004)

    Google Scholar 

  17. Maojo, V., Martin-Sanchez, F., Kulikowski, C., Rodriguez-Paton, A., Fritts, M.: Nanoinformatics and DNA-based computing: catalyzing nanomedicine. Pediatr. Res. 67(5), 481 (2010)

    Article  Google Scholar 

  18. Zang, L., Che, Y., Moore, J.S.: One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices. Acc. Chem. Res. 41(12), 1596–1608 (2008)

    Article  Google Scholar 

  19. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)

    Article  Google Scholar 

  20. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297 (2006)

    Article  Google Scholar 

  21. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131(47), 17303–17314 (2009)

    Article  Google Scholar 

  22. Zhang, D.Y., Hariadi, R.F., Choi, H.M.T., Winfree, E.: Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat. Commun. 4, 1965 (2013)

    Article  Google Scholar 

  23. Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett. 8(7), 1791–1797 (2007)

    Article  Google Scholar 

  24. Li, W., Yang, Y., Yan, H., Liu, Y.: Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement. Nano Lett. 13(6), 2980–2988 (2013)

    Article  Google Scholar 

  25. Genot, A.J., Bath, J., Turberfield, A.J.: Reversible logic circuits made of DNA. J. Am. Chem. Soc. 133(50), 20080–20083 (2011)

    Article  Google Scholar 

  26. Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from immobilized DNA-based logic gates. J. Am. Chem. Soc. 129(48), 14875–14879 (2007)

    Article  Google Scholar 

  27. Wang, Y., Tian, G., Hou, H., Ye, M., Cui, G.: Simple logic computation based on the DNA strand displacement. J. Comput. Theor. Nanosci. 11(9), 1975–1982 (2014)

    Article  Google Scholar 

  28. Bath, J., Turberfield, A.J.: DNA nanomachines. Nature Nanotechnol. 2(5), 275 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the State Key Program of National Natural Science of China (Grant No. 61632002), the National Key R&D Program of China for International S&T Cooperation Projects (No. 2017YFE010 3900), the National Natural Science of China (Grant Nos. 61603348, 61775198, 61603347, 61572446, 61472372), Science and Technology Innovation Talents Henan Province (Grant No. 174200510012), Research Program of Henan Province (Grant Nos. 172102210066, 17A120005, 182102210160), Youth Talent Lifting Project of Henan Province and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Yuan, G., Huang, C., Sun, J. (2018). Complex Logic Circuit of Three-Input and Nine-Output by DNA Strand Displacement. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 952. Springer, Singapore. https://doi.org/10.1007/978-981-13-2829-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2829-9_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2828-2

  • Online ISBN: 978-981-13-2829-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics