Skip to main content

Three-Input and Nine-Output Cubic Logical Circuit Based on DNA Strand Displacement

  • Conference paper
  • First Online:
  • 826 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 952))

Abstract

The method of DNA strand displacement breaks the static thinking of DNA nanotechnology, which makes the biochemical cascade reaction, nanoscale motion and energy conversion widely used in the logic gate operating model. The cubic logical circuit of three-input and nine-output based on DNA strand displacement is designed in this article. The cubic logic circuit can be translated into the dual-rail logic circuit and the dual-rail logic circuit can be translated into the DNA seesaw logic circuit, then it can be simulated through the Visual DSD software. It demonstrated that the correctness of logic circuit through the simulation results. DNA strand displacement has gigantic capable of implementation of logical calculation which plays a momentous role in the acquirement of bio-computer, and it is most widely used in the majority computing systems. At the same time, the difficult problems in the construction of large-scale complex logic circuits can be solved, and have great significance to research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103 (2011)

    Article  Google Scholar 

  2. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface, Article ID rsif.2010.0729 (2011)

    Google Scholar 

  3. Genot, A.J., Bath, J., Turberfield, A.J.: Combinatorial displacement of DNA strands: application to matrix multiplication and weighted sums. Angew. Chem. Int. Ed. 52(4), 1189–1192 (2013)

    Article  Google Scholar 

  4. Yang, X., Tang, Y., Traynor, S.M.: Regulation of DNA strand displacement using an allosteric DNA toehold. J. Am. Chem. Soc. 138(42), 14076–14082 (2016)

    Article  Google Scholar 

  5. Jung, C., Allen, P.B., Ellington, A.D.: A stochastic DNA walker that traverses a microparticle surface. Nat. Nanotechnol. 11(2), 157 (2016)

    Article  Google Scholar 

  6. Stojanovic, M.N., Stefanovic, D., Rudchenko, S.: Exercises in molecular computing. Acc. Chem. Res. 47(6), 1845–1852 (2014)

    Article  Google Scholar 

  7. Winfree, E.: DNA computing by self-assembly. In: 2003 NAE Symposium on Frontiers of Engineering, pp. 105–117 (2004)

    Google Scholar 

  8. Wang, Z., Wu, Y., Tian, G.: The application research on multi-digit logic operation based on DNA strand displacement. J. Comput. Theor. Nanosci. 12(7), 1252–1257 (2015)

    Article  Google Scholar 

  9. Sun, J., Li, X., Cui, G.: One-bit half adder-half subtractor logical operation based on the DNA strand displacement. J. Nanoelectron. Optoelectron. 12(4), 375–380 (2017)

    Article  Google Scholar 

  10. Song, T., Garg, S., Mokhtar, R.: Analog computation by DNA strand displacement circuits. ACS Synth. Biol. 5(8), 898–912 (2016)

    Article  Google Scholar 

  11. Chen, X.X., Dong, Y.F., Xiao, S.Y.: DNA and DNA computation based on toehold-mediated strand-displacement reactions. Acta Phys. 65, 178106 (2016)

    Google Scholar 

  12. Eckhoff, G., Codrea, V., Ellington, A.D.: Beyond allostery: catalytic regulation of a deoxyribozyme through an entropy-driven DNA amplifier. J. Syst. Chem. 1(1), 13 (2010)

    Article  Google Scholar 

  13. Sawlekar, R., Montefusco, F., Kulkarni, V.V.: Implementing nonlinear feedback controllers using DNA strand displacement reactions. IEEE Trans. Nanobiosci. 15(5), 443–454 (2016)

    Article  Google Scholar 

  14. Sarpeshkar, R.: Analog versus digital: extrapolating from electronics to neurobiology. Neural Comput. 10(7), 1601–1638 (1998)

    Article  Google Scholar 

  15. Sauro, H.M., Kim, K.: Synthetic biology: it’s an analog world. Nature 497(7451), 572 (2013)

    Article  Google Scholar 

  16. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368 (2011)

    Article  Google Scholar 

  17. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  18. Zhu, J., Zhang, L., Dong, S.: Four-way junction-driven DNA strand displacement and its application in building majority logic circuit. ACS Nano 7(11), 10211–10217 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

The work is supported by the State Key Program of National Natural Science of China (Grant No. 61632002), the National Key R and D Program of China for International S and T Cooperation Projects (No. 2017YFE0103900), the National Natural Science of China (Grant Nos. 61603348, 61775198, 61603347, 61572446, 61472372), Science and Technology Innovation Talents Henan Province (Grant No. 174200510012), Research Program of Henan Province (Grant Nos. 172102210066, 17A120005, 182102210160), Youth Talent Lifting Project of Henan Province and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Li, M., Sun, J., Huang, C. (2018). Three-Input and Nine-Output Cubic Logical Circuit Based on DNA Strand Displacement. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 952. Springer, Singapore. https://doi.org/10.1007/978-981-13-2829-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2829-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2828-2

  • Online ISBN: 978-981-13-2829-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics