Skip to main content

Sleep and Appetitive Conditioned Memory

  • Chapter
  • First Online:

Abstract

In associative appetitive learning, an individual learns to extract logical information of the conditioned stimulus to predict the potential outcomes. How the conditioned stimulus drives appropriate predictive behavior is not yet known, but it has been found that the association is formed at neural level between the conditioned and unconditioned circuitries. The conditioned stimulus possibly generates many different types of associations with the appetitive unconditioned stimulus. For example, the conditioned stimulus forms an association with food (unconditioned stimulus) through their specific (i) affective and (ii) preparative properties. These properties may be encoded and represented at different neural circuitries in different brain regions. Several neurotransmitters, such as dopamine, glutamate, serotonin, cannabinoids, and opioids, play an important role in appetitive conditioning. Some neuropeptides such as orexin, leptin, ghrelin, etc. are also involved in the modulation of the affective attribute of appetitive conditioning tasks. In addition, a large number of studies consistently revealed the role of sleep in a variety of learning tasks such as declarative memory, procedural memory, and spatial learning tasks. The role of sleep in appetitive conditioning tasks has, however, not been investigated in detail. We have reported that short-term sleep deprivation soon after training impairs the consolidation of appetitive conditioned memory. We have also found that the consolidation of appetitive conditioned memory requires augmented REM sleep after training. In this chapter, we have discussed in detail the role of different brain areas, neural circuitries, and, more specifically, sleep in appetitive conditioning.

Shweta Tripathi is the name of two contributors of this chapter having exactly same name & affiliation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahima RS, Saper CB, Flier JS, Elmquist JK (2000) Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 21:263–307

    CAS  PubMed  Google Scholar 

  • Alcaro A, Huber R, Panksepp J (2007) Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Res Rev 56:283–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alzoubi KH, Khabour OF, Rashid BA, Damaj IM, Salah HA (2012) The neuroprotective effect of vitamin E on chronic sleep deprivation-induced memory impairment: the role of oxidative stress. Behav Brain Res 226:205–210

    CAS  PubMed  Google Scholar 

  • Atkinson TJ (2008) Central and peripheral neuroendocrine peptides and signalling in appetite regulation: considerations for obesity pharmacotherapy. Obes Rev 9:108–120

    CAS  PubMed  Google Scholar 

  • Baldwin AE, Sadeghian K, Holahan MR, Kelley AE (2002) Appetitive instrumental learning is impaired by inhibition of cAMP-dependent protein kinase within the nucleus accumbens. Neurobiol Learn Mem 77:44–62

    CAS  PubMed  Google Scholar 

  • Barron A, Schulz D, Robinson G (2002) Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). J Comp Physiol A 188:603–610

    CAS  Google Scholar 

  • Barron AB, Sovik E, Cornish JL (2010) The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Front Behav Neurosci 4:163

    PubMed  PubMed Central  Google Scholar 

  • Baxter DA, Byrne JH (2006) Feeding behavior of Aplysia: a model system for comparing cellular mechanisms of classical and operant conditioning. Learn Mem 13:669–680

    CAS  PubMed  Google Scholar 

  • Baxter MG, Parker A, Lindner CC, Izquierdo AD, Murray EA (2000) Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci 20:4311–4319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Behrend ER, Bitterman ME (1964) Avoidance-conditioning in the fish: further studies of the Cs-Us interval. Am J Psychol 77:15–28

    CAS  PubMed  Google Scholar 

  • Belguermi A, Bovet D, Pascal A, Prevot-Julliard AC, Saint Jalme M, Rat-Fischer L, Leboucher G (2011) Pigeons discriminate between human feeders. Anim Cogn 14:909–914

    PubMed  Google Scholar 

  • Benington JH, Frank MG (2003) Cellular and molecular connections between sleep and synaptic plasticity. Prog Neurobiol 69:71–101

    CAS  PubMed  Google Scholar 

  • Benoit SC, Davidson TL, Chan K-H, Trigilio T, Jarrard LE (1999) Pavlovian conditioning and extinction of context cues and punctate CSs in rats with ibotenate lesions of the hippocampus. Psychobiology 27:26–39

    Google Scholar 

  • Beylin AV, Gandhi CC, Wood GE, Talk AC, Matzel LD, Shors TJ (2001) The role of the hippocampus in trace conditioning: temporal discontinuity or task difficulty? Neurobiol Learn Mem 76:447–461

    CAS  PubMed  Google Scholar 

  • Borgland SL, Storm E, Bonci A (2008) Orexin B/hypocretin 2 increases glutamatergic transmission to ventral tegmental area neurons. Eur J Neurosci 28:1545–1556

    CAS  PubMed  Google Scholar 

  • Browning MD, Huganir R, Greengard P (1985) Protein phosphorylation and neuronal function. J Neurochem 45:11–23

    CAS  PubMed  Google Scholar 

  • Burns LH, Robbins TW, Everitt BJ (1993) Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of D-amphetamine. Behav Brain Res 55:167–183

    CAS  PubMed  Google Scholar 

  • Bushey D, Huber R, Tononi G, Cirelli C (2007) Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J Neurosci 27:5384–5393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busto GU, Cervantes-Sandoval I, Davis RL (2010) Olfactory learning in Drosophila. Physiology (Bethesda, MD) 25:338–346

    CAS  Google Scholar 

  • Cardinal RN, Parkinson JA, Lachenal G, Halkerston KM, Rudarakanchana N, Hall J, Morrison CH, Howes SR, Robbins TW, Everitt BJ (2002) Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav Neurosci 116:553–567

    PubMed  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2003) The contribution of the amygdala, nucleus accumbens, and prefrontal cortex to emotion and motivated behaviour. Int Congr Ser 1250:347–370

    Google Scholar 

  • Casnellie JE (1991) Protein kinase inhibitors: probes for the functions of protein phosphorylation. Adv Pharmacol 22:167–205

    CAS  PubMed  Google Scholar 

  • Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G (2010) Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol Behav 100:419–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheer JF, Aragona BJ, Heien ML, Seipel AT, Carelli RM, Wightman RM (2007) Coordinated accumbal dopamine release and neural activity drive goal-directed behavior. Neuron 54:237–244

    CAS  PubMed  Google Scholar 

  • Chen L, Tian S, Ke J (2014) Rapid eye movement sleep deprivation disrupts consolidation but not reconsolidation of novel object recognition memory in rats. Neurosci Lett 563:12–16

    CAS  PubMed  Google Scholar 

  • Chowdhury A, Chandra R, Jha SK (2011) Total sleep deprivation impairs the encoding of trace-conditioned memory in the rat. Neurobiol Learn Mem 95:355–360

    PubMed  Google Scholar 

  • Clifton PG, Vickers SP, Somerville EM (1998) Little and often: ingestive behavior patterns following hippocampal lesions in rats. Behav Neurosci 112:502–511

    CAS  PubMed  Google Scholar 

  • Cohen HB, Dement WC (1965) Sleep: changes in threshold to electroconvulsive shock in rats after deprivation of “paradoxical” phase. Science 150:1318–1319

    CAS  PubMed  Google Scholar 

  • Cohen HB, Duncan RF 2nd, Dement WC (1967) Sleep: the effect of electroconvulsive shock in cats deprived of REM sleep. Science 156:1646–1648

    CAS  PubMed  Google Scholar 

  • Colavito V, Fabene PF, Grassi-Zucconi G, Pifferi F, Lamberty Y, Bentivoglio M, Bertini G (2013) Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci 7:106

    PubMed  PubMed Central  Google Scholar 

  • Colgin LL (2016) Rhythms of the hippocampal network. Nat Rev Neurosci 17:239–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordova CA, Said BO, McCarley RW, Baxter MG, Chiba AA, Strecker RE (2006) Sleep deprivation in rats produces attentional impairments on a 5-choice serial reaction time task. Sleep 29:69–76

    PubMed  Google Scholar 

  • Cota D, Tschöp MH, Horvath TL, Levine AS (2006) Cannabinoids, opioids and eating behavior: the molecular face of hedonism? Brain Res Rev 51:85–107

    CAS  PubMed  Google Scholar 

  • Cox SM, Andrade A, Johnsrude IS (2005) Learning to like: a role for human orbitofrontal cortex in conditioned reward. J Neurosci 25:2733–2740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32:1232–1241

    CAS  PubMed  Google Scholar 

  • Dalley JW, Lääne K, Theobald DEH, Armstrong HC, Corlett PR, Chudasama Y, Robbins TW (2005) Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc Natl Acad Sci 102:6189–6194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Datta S (2000) Avoidance task training potentiates phasic pontine-wave density in the rat: a mechanism for sleep-dependent plasticity. J Neurosci 20:8607–8613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson TL, Jarrard LE (1993) A role for hippocampus in the utilization of hunger signals. Behav Neural Biol 59:167–171

    CAS  PubMed  Google Scholar 

  • Day JJ, Carelli RM (2007) The nucleus accumbens and Pavlovian reward learning. Neuroscientist 13:148–159

    PubMed  PubMed Central  Google Scholar 

  • Dayan P, Kakade S, Montague PR (2000) Learning and selective attention. Nat Neurosci 3(Suppl):1218–1223

    CAS  PubMed  Google Scholar 

  • De Houwer J, Thomas S, Baeyens F (2001) Associative learning of likes and dislikes: a review of 25 years of research on human evaluative conditioning. Psychol Bull 127:853–869

    PubMed  Google Scholar 

  • Di Ciano P, Everitt BJ (2004) Contribution of the ventral tegmental area to cocaine-seeking maintained by a drug-paired conditioned stimulus in rats. Eur J Neurosci 19:1661–1667

    PubMed  Google Scholar 

  • Dujardin K, Guerrien A, Leconte P (1990) Sleep, brain activation and cognition. Physiol Behav 47:1271–1278

    CAS  PubMed  Google Scholar 

  • Epstein LH, Temple JL, Roemmich JN, Bouton ME (2009) Habituation as a determinant of human food intake. Psychol Rev 116:384–407

    PubMed  PubMed Central  Google Scholar 

  • Eschenko O, Molle M, Born J, Sara SJ (2006) Elevated sleep spindle density after learning or after retrieval in rats. J Neurosci 26:12914–12920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Everitt BJ, Cardinal RN, Parkinson JA, Robbins TW (2003) Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann N Y Acad Sci 985:233–250

    PubMed  Google Scholar 

  • Everson CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat: III. Total sleep deprivation. Sleep 12:13–21

    CAS  PubMed  Google Scholar 

  • Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC (2007) Leptin regulates striatal regions and human eating behavior. Science 317:1355

    CAS  PubMed  Google Scholar 

  • Fields HL, Hjelmstad GO, Margolis EB, Nicola SM (2007) Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 30:289–316

    CAS  PubMed  Google Scholar 

  • Fishbein W (1971) Disruptive effects of rapid eye movement sleep deprivation on long-term memory. Physiol Behav 6:279–282

    CAS  PubMed  Google Scholar 

  • Fishbein W, Gutwein BM (1977) Paradoxical sleep and memory storage processes. Behav Biol 19:425–464

    CAS  PubMed  Google Scholar 

  • Flaherty CF, Coppotelli C, Hsu D, Otto T (1998) Excitotoxic lesions of the hippocampus disrupt runway but not consummatory contrast. Behav Brain Res 93:1–9

    CAS  PubMed  Google Scholar 

  • Floresco SB, Blaha CD, Yang CR, Phillips AG (2001) Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. J Neurosci 21:6370–6376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fogel SM, Smith CT, Cote KA (2007) Dissociable learning-dependent changes in REM and non-REM sleep in declarative and procedural memory systems. Behav Brain Res 180:48–61

    PubMed  Google Scholar 

  • Gabrieli JD, McGlinchey-Berroth R, Carrillo MC, Gluck MA, Cermak LS, Disterhoft JF (1995) Intact delay-eyeblink classical conditioning in amnesia. Behav Neurosci 109:819–827

    CAS  PubMed  Google Scholar 

  • Gallagher M, Graham PW, Holland PC (1990) The amygdala central nucleus and appetitive Pavlovian conditioning: lesions impair one class of conditioned behavior. J Neurosci 10:1906–1911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher M, McMahan RW, Schoenbaum G (1999) Orbitofrontal cortex and representation of incentive value in associative learning. J Neurosci 19:6610–6614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler S, Wise RA (2008) Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci 19:227–244

    PubMed  PubMed Central  Google Scholar 

  • Gore F, Schwartz EC, Brangers BC, Aladi S, Stujenske JM, Likhtik E, Russo MJ, Gordon JA, Salzman CD, Axel R (2015) Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162:134–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottfried JA, O’Doherty J, Dolan RJ (2002) Appetitive and aversive olfactory learning in humans studied using event-related functional magnetic resonance imaging. J Neurosci 22:10829–10837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graves CA, Solomon PR (1985) Age-related disruption of trace but not delay classical conditioning of the rabbit’s nictitating membrane response. Behav Neurosci 99:88–96

    CAS  PubMed  Google Scholar 

  • Graves LA, Heller EA, Pack AI, Abel T (2003) Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem 10:168–176

    PubMed  PubMed Central  Google Scholar 

  • Grillon C, Lissek S, McDowell D, Levenson J, Pine DS (2007) Reduction of trace but not delay eyeblink conditioning in panic disorder. Am J Psychiatry 164:283–289

    PubMed  Google Scholar 

  • Hamm AO, Vaitl D (1996) Affective learning: awareness and aversion. Psychophysiology 33:698–710

    CAS  PubMed  Google Scholar 

  • Han JS, McMahan RW, Holland P, Gallagher M (1997) The role of an amygdalo-nigrostriatal pathway in associative learning. J Neurosci 17:3913–3919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han J-H, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science 316:457

    CAS  PubMed  Google Scholar 

  • Hanlon EC, Andrzejewski ME, Harder BK, Kelley AE, Benca RM (2005) The effect of REM sleep deprivation on motivation for food reward. Behav Brain Res 163:58–69

    PubMed  Google Scholar 

  • Hanlon EC, Faraguna U, Vyazovskiy VV, Tononi G, Cirelli C (2009) Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat. Sleep 32:719–729

    PubMed  PubMed Central  Google Scholar 

  • Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559

    CAS  PubMed  Google Scholar 

  • Hatfield T, Han JS, Conley M, Gallagher M, Holland P (1996) Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J Neurosci 16:5256–5265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havel PJ (2001) Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med (Maywood) 226:963–977

    CAS  Google Scholar 

  • Hayashi K, Nakao K, Nakamura K (2015) Appetitive and aversive information coding in the primate dorsal raphe nucleus. J Neurosci 35:6195–6208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes DJ, Northoff G (2011) Identifying a network of brain regions involved in aversion-related processing: a cross-species translational investigation. Front Integr Neurosci 5:49

    PubMed  PubMed Central  Google Scholar 

  • Hayes DJ, Duncan NW, Xu J, Northoff G (2014) A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neurosci Biobehav Rev 45:350–368

    PubMed  Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275

    CAS  PubMed  Google Scholar 

  • Hellman K, Abel T (2007) Fear conditioning increases NREM sleep. Behav Neurosci 121:310–323

    PubMed  PubMed Central  Google Scholar 

  • Hennevin E, Maho C (2005) Fear conditioning-induced plasticity in auditory thalamus and cortex: to what extent is it expressed during slow-wave sleep? Behav Neurosci 119:1277–1289

    PubMed  Google Scholar 

  • Hennevin E, Maho C, Hars B, Dutrieux G (1993) Learning-induced plasticity in the medial geniculate-nucleus is expressed during paradoxical sleep. Behav Neurosci 107:1018–1030

    CAS  PubMed  Google Scholar 

  • Hennevin E, Maho C, Hars B (1998) Neuronal plasticity induced by fear conditioning is expressed during paradoxical sleep: evidence from simultaneous recordings in the lateral amygdala and the medial geniculate in rats. Behav Neurosci 112:839–862

    CAS  PubMed  Google Scholar 

  • Hennevin E, Huetz C, Edeline J-M (2007) Neural representations during sleep: from sensory processing to memory traces. Neurobiol Learn Mem 87:416–440

    PubMed  Google Scholar 

  • Hnasko TS, Hjelmstad GO, Fields HL, Edwards RH (2012) Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J Neurosci 32:15076–15085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobin JA, Goosens KA, Maren S (2003) Context-dependent neuronal activity in the lateral amygdala represents fear memories after extinction. J Neurosci 23:8410–8416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussaini SA, Bogusch L, Landgraf T, Menzel R (2009) Sleep deprivation affects extinction but not acquisition memory in honeybees. Learn Mem 16:698–705

    PubMed  Google Scholar 

  • Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito R, Everitt BJ, Robbins TW (2005) The hippocampus and appetitive Pavlovian conditioning: effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping. Hippocampus 15:713–721

    PubMed  Google Scholar 

  • Ito R, Robbins TW, McNaughton BL, Everitt BJ (2006) Selective excitotoxic lesions of the hippocampus and basolateral amygdala have dissociable effects on appetitive cue and place conditioning based on path integration in a novel Y-maze procedure. Eur J Neurosci 23:3071–3080

    PubMed  PubMed Central  Google Scholar 

  • Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68:285–316

    CAS  PubMed  Google Scholar 

  • Joiner WJ, Crocker A, White BH, Sehgal A (2006) Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441:757–760

    CAS  PubMed  Google Scholar 

  • Kandel ER (1989) Genes, nerve cells, and the remembrance of things past. J Neuropsychiatr Clin Neurosci 1:103–125

    CAS  Google Scholar 

  • Kanoski SE, Hayes MR, Greenwald HS, Fortin SM, Gianessi CA, Gilbert JR, Grill HJ (2011) Hippocampal leptin signaling reduces food intake and modulates food-related memory processing. Neuropsychopharmacology 36:1859–1870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley AE, Andrzejewski ME, Baldwin AE, Hernandez PJ, Pratt WE (2003) Glutamate-mediated plasticity in corticostriatal networks. Ann N Y Acad Sci 1003:159–168

    CAS  PubMed  Google Scholar 

  • Kennedy CH (2002) Effects of REM sleep deprivation on a multiple schedule of appetitive reinforcement. Behav Brain Res 128:205–214

    PubMed  Google Scholar 

  • Knutson KL, Van Cauter E (2008) Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci 1129:287–304

    PubMed  PubMed Central  Google Scholar 

  • Kötter R (1994) Postsynaptic integration of glutamatergic and dopaminergic signals in the striatum. Prog Neurobiol 44:163–196

    PubMed  Google Scholar 

  • Kumar T, Jha SK (2012) Sleep deprivation impairs consolidation of cued fear memory in rats. PLoS One 7:e47042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar T, Jha SK (2017) Influence of cued-fear conditioning and its impairment on NREM sleep. Neurobiol Learn Mem 144:155–165

    PubMed  Google Scholar 

  • Kushida CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat: IV. Paradoxical sleep deprivation. Sleep 12:22–30

    CAS  PubMed  Google Scholar 

  • Lansink CS, Goltstein PM, Lankelma JV, McNaughton BL, Pennartz CM (2009) Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol 7:e1000173

    PubMed  PubMed Central  Google Scholar 

  • Leconte P, Hennevin E, Bloch V (1974) Duration of paradoxical sleep necessary for the acquisition of conditioned avoidance in the rat. Physiol Behav 13:675–681

    CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    CAS  PubMed  Google Scholar 

  • Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep – wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81:891–899

    CAS  PubMed  Google Scholar 

  • Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67:145

    CAS  PubMed  Google Scholar 

  • Longo N, Klempay S, Bitterman ME (1964) Classical appetitive conditioning in the pigeon. Psychon Sci 1:19–20

    Google Scholar 

  • Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156

    CAS  PubMed  Google Scholar 

  • Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538

    CAS  PubMed  Google Scholar 

  • Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527

    CAS  PubMed  Google Scholar 

  • Malik S, McGlone F, Bedrossian D, Dagher A (2008) Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab 7:400–409

    CAS  PubMed  Google Scholar 

  • Martin-Soelch C, Linthicum J, Ernst M (2007) Appetitive conditioning: neural bases and implications for psychopathology. Neurosci Biobehav Rev 31:426–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto Y, Menzel R, Sandoz JC, Giurfa M (2012) Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. J Neurosci Methods 211:159–167

    PubMed  Google Scholar 

  • Mazur R, Seher V (2008) Socially learned foraging behaviour in wild black bears, Ursus americanus. Anim Behav 75:1503–1508

    Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    CAS  PubMed  Google Scholar 

  • Mirenowicz J, Schultz W (1994) Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72:1024–1027

    CAS  PubMed  Google Scholar 

  • Mirmiran M, van den Dungen H, Uylings HB (1982) Sleep patterns during rearing under different environmental conditions in juvenile rats. Brain Res 233:287–298

    CAS  PubMed  Google Scholar 

  • Mizunami M, Matsumoto Y (2010) Roles of aminergic neurons in formation and recall of associative memory in crickets. Front Behav Neurosci 4:172

    PubMed  PubMed Central  Google Scholar 

  • Mizunami M, Unoki S, Mori Y, Hirashima D, Hatano A, Matsumoto Y (2009) Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol 7:46

    PubMed  PubMed Central  Google Scholar 

  • Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    CAS  PubMed  Google Scholar 

  • Morselli L, Leproult R, Balbo M, Spiegel K (2010) Role of sleep duration in the regulation of glucose metabolism and appetite. Best Pract Res Clin Endocrinol Metab 24:687–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mullington JM, Chan JL, Van Dongen HP, Szuba MP, Samaras J, Price NJ, Meier-Ewert HK, Dinges DF, Mantzoros CS (2003) Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol 15:851–854

    CAS  PubMed  Google Scholar 

  • Nader R, Smith C (2003) A role for stage 2 sleep in memory processing. In: Maquet P, Smith C, Stickgold R (eds) Sleep and brain plasticity. Oxford University Press, Oxford, pp 87–98. https://doi.org/10.1093/acprof:oso/9780198574002.001.0001. Oxford Scholarship Online

    Chapter  Google Scholar 

  • Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, Holden SS, Mertens KL, Anahtar M, Felix-Ortiz AC, Wickersham IR, Gray JM, Tye KM (2015) A circuit mechanism for differentiating positive and negative associations. Nature 520:675–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen PV, Woo NH (2003) Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 71:401–437

    CAS  PubMed  Google Scholar 

  • Norgren R, Hajnal A, Mungarndee SS (2006) Gustatory reward and the nucleus accumbens. Physiol Behav 89:531–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14:769–776

    PubMed  Google Scholar 

  • O’Donnell P, Greene J, Pabello N, Lewis BL, Grace AA (1999) Modulation of cell firing in the nucleus accumbens. Ann N Y Acad Sci 877:157–175

    PubMed  Google Scholar 

  • Ono T, Nishijo H, Uwano T (1995) Amygdala role in conditioned associative learning. Prog Neurobiol 46:401–422

    CAS  PubMed  Google Scholar 

  • Palchykova S, Winsky-Sommerer R, Meerlo P, Durr R, Tobler I (2006) Sleep deprivation impairs object recognition in mice. Neurobiol Learn Mem 85:263–271

    PubMed  Google Scholar 

  • Parkinson JA, Robbins TW, Everitt BJ (2000a) Dissociable roles of the central and basolateral amygdala in appetitive emotional learning. Eur J Neurosci 12:405–413

    CAS  PubMed  Google Scholar 

  • Parkinson JA, Willoughby PJ, Robbins TW, Everitt BJ (2000b) Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems. Behav Neurosci 114:42–63

    CAS  PubMed  Google Scholar 

  • Parkinson JA, Dalley JW, Cardinal RN, Bamford A, Fehnert B, Lachenal G, Rudarakanchana N, Halkerston KM, Robbins TW, Everitt BJ (2002) Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav Brain Res 137:149–163

    CAS  PubMed  Google Scholar 

  • Passetti F, Dalley JW, O’Connell MT, Everitt BJ, Robbins TW (2000) Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task. Eur J Neurosci 12:3051–3058

    CAS  PubMed  Google Scholar 

  • Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlov PI (1927) (2010) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Ann Neurosci 17:136–141

    Google Scholar 

  • Pawlyk AC, Morrison AR, Ross RJ, Brennan FX (2008) Stress-induced changes in sleep in rodents: models and mechanisms. Neurosci Biobehav Rev 32:99–117

    PubMed  Google Scholar 

  • Pearce JM, Bouton ME (2001) Theories of associative learning in animals. Annu Rev Psychol 52:111–139

    CAS  PubMed  Google Scholar 

  • Pennartz CMA, Ameerun RF, Groenewegen HJ, Lopes da Silva FH (1993) Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. Eur J Neurosci 5:107–117

    CAS  PubMed  Google Scholar 

  • Petrovich GD (2011) Forebrain circuits and control of feeding by learned cues. Neurobiol Learn Mem 95:152–158

    PubMed  Google Scholar 

  • Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12:919–926

    CAS  PubMed  Google Scholar 

  • Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187

    CAS  PubMed  Google Scholar 

  • Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422:614–618

    CAS  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6:228–236

    CAS  PubMed  Google Scholar 

  • Robledo P, Robbins TW, Everitt BJ (1996) Effects of excitotoxic lesions of the central amygdaloid nucleus on the potentiation of reward-related stimuli by intra-accumbens amphetamine. Behav Neurosci 110:981–990

    CAS  PubMed  Google Scholar 

  • Rodriguez P, Levy WB (2001) A model of hippocampal activity in trace conditioning: where’s the trace? Behav Neurosci 115:1224–1238

    CAS  PubMed  Google Scholar 

  • Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothermel JD, Parker Botelho LH (1988) A mechanistic and kinetic analysis of the interactions of the diastereoisomers of adenosine 3′,5′-(cyclic)phosphorothioate with purified cyclic AMP-dependent protein kinase. Biochem J 251:757–762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruskin DN, LaHoste GJ (2009) Reduced-volume cues effectively support fear conditioning despite sleep deprivation. Physiol Behav 96:64–66

    CAS  PubMed  Google Scholar 

  • Ruskin DN, Liu C, Dunn KE, Bazan NG, LaHoste GJ (2004) Sleep deprivation impairs hippocampus-mediated contextual learning but not amygdala-mediated cued learning in rats. Eur J Neurosci 19:3121–3124

    PubMed  Google Scholar 

  • Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625

    CAS  PubMed  Google Scholar 

  • Sangha S, Chadick JZ, Janak PH (2013) Safety encoding in the basal amygdala. J Neurosci 33:3744–3751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schenck CH, Hurwitz TD, Bundlie SR, Mahowald MW (1991) Sleep-related eating disorders: polysomnographic correlates of a heterogeneous syndrome distinct from daytime eating disorders. Sleep 14:419–431

    CAS  PubMed  Google Scholar 

  • Schmid SM, Hallschmid M, Jauch-Chara K, Bandorf N, Born J, Schultes B (2007) Sleep loss alters basal metabolic hormone secretion and modulates the dynamic counterregulatory response to hypoglycemia. J Clin Endocrinol Metab 92:3044–3051

    CAS  PubMed  Google Scholar 

  • Schoenbaum G, Roesch M (2005) Orbitofrontal cortex, associative learning, and expectancies. Neuron 47:633–636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Setlow B, Nugent SL, Saddoris MP, Gallagher M (2003a) Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn Mem 10:129–140

    PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Setlow B, Saddoris MP, Gallagher M (2003b) Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39:855–867

    CAS  PubMed  Google Scholar 

  • Schroll C, Riemensperger T, Bucher D, Ehmer J, Völler T, Erbguth K, Gerber B, Hendel T, Nagel G, Buchner E (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr Biol 16:1741–1747

    CAS  PubMed  Google Scholar 

  • Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct BBF 6:24–24

    PubMed  Google Scholar 

  • Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148

    CAS  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL (1996) Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:1870–1873

    CAS  PubMed  Google Scholar 

  • Smith C (1985) Sleep states and learning: a review of the animal literature. Neurosci Biobehav Rev 9:157–168

    CAS  PubMed  Google Scholar 

  • Smith C, Rose GM (1996) Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiol Behav 59:93–97

    CAS  PubMed  Google Scholar 

  • Smith C, Rose GM (1997) Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci 111:1197–1204

    CAS  PubMed  Google Scholar 

  • Smith CT, Conway JM, Rose GM (1998) Brief paradoxical sleep deprivation impairs reference, but not working, memory in the radial arm maze task. Neurobiol Learn Mem 69:211–217

    CAS  PubMed  Google Scholar 

  • Solomon PR, Graves CA (1985) Classical conditioning of the nictitating membrane response in aged rabbits. Ann N Y Acad Sci 444:486–488

    CAS  PubMed  Google Scholar 

  • Spencer JP, Murphy KPSJ (2000) Bi-directional changes in synaptic plasticity induced at corticostriatal synapses in vitro. Exp Brain Res 135:497–503

    CAS  PubMed  Google Scholar 

  • Staras K, Kemenes G, Benjamin PR (1999) Cellular traces of behavioral classical conditioning can be recorded at several specific sites in a simple nervous system. J Neurosci 19:347–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stickgold R, Hobson JA, Fosse R, Fosse M (2001) Sleep, learning, and dreams: off-line memory reprocessing. Science 294:1052

    CAS  PubMed  Google Scholar 

  • Straub VA, Styles BJ, Ireland JS, O’Shea M, Benjamin PR (2004) Central localization of plasticity involved in appetitive conditioning in Lymnaea. Learn Mem 11:787–793

    PubMed  PubMed Central  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    CAS  PubMed  Google Scholar 

  • Tagney J (1973) Sleep patterns related to rearing rats in enriched and impoverished environments. Brain Res 53:353–361

    CAS  PubMed  Google Scholar 

  • Takeda K (1961) Classical conditioned response in the honey bee. J Insect Physiol 6:168–179

    CAS  Google Scholar 

  • Tripathi S, Jha SK (2016) Short-term total sleep deprivation alters delay-conditioned memory in the rat. Behav Neurosci 130:325–335

    PubMed  Google Scholar 

  • Tripathi S, Jha SK (2017) PKA and Wnt pathways in the amygdala modulate sleep dependent consolidation of appetitive delay-conditioned memory in the rat. Sleep Vigilance 1:123–159

    Google Scholar 

  • Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output via non-canonical release of GABA. Nature 490:262–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, Huang T, Brown KM, Li XY, Descalzi G, Kim SS, Chen T, Shang YZ, Zhuo M, Houslay MD, Abel T (2009) Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461:1122–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Wang G-J, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15:37–46

    CAS  PubMed  Google Scholar 

  • Walker MP (2009) The role of sleep in cognition and emotion. Ann N Y Acad Sci 1156:168–197

    PubMed  Google Scholar 

  • Walker MP, Stickgold R (2004) Sleep-dependent learning and memory consolidation. Neuron 44:121–133

    CAS  PubMed  Google Scholar 

  • Walsh CM, Booth V, Poe GR (2011) Spatial and reversal learning in the Morris water maze are largely resistant to six hours of REM sleep deprivation following training. Learn Mem 18:422–434

    PubMed  PubMed Central  Google Scholar 

  • Wamsley EJ, Antrobus JS (2009) The expression of trace conditioning during non-REM sleep and its relation to subjective experience. Neurobiol Learn Mem 92:283–291

    PubMed  Google Scholar 

  • Woodruff-Pak DS, Disterhoft JF (2008) Where is the trace in trace conditioning? Trends Neurosci 31:105–112

    CAS  PubMed  Google Scholar 

  • Yang R-H, Hu S-J, Wang Y, Zhang W-B, Luo W-J, Chen J-Y (2008) Paradoxical sleep deprivation impairs spatial learning and affects membrane excitability and mitochondrial protein in the hippocampus. Brain Res 1230:224–232

    CAS  PubMed  Google Scholar 

  • Yun IA, Wakabayashi KT, Fields HL, Nicola SM (2004) The ventral tegmental area is required for the behavioral and nucleus accumbens neuronal firing responses to incentive cues. J Neurosci 24:2923–2933

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding to SKJ from DBT, DST, DST-PURSE, UGC-Resource Networking, UGC-SAP, and UPOE-II is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, S., Tripathi, S., Anjali, Jha, S.K. (2019). Sleep and Appetitive Conditioned Memory. In: Jha, S., Jha, V. (eds) Sleep, Memory and Synaptic Plasticity. Springer, Singapore. https://doi.org/10.1007/978-981-13-2814-5_9

Download citation

Publish with us

Policies and ethics