Skip to main content

Aspirin-Exacerbated Respiratory Disease (AERD)

  • Chapter
  • First Online:
Advances in Asthma

Abstract

The characteristics in AERD are severe asthma, eosinophilic rhinosinusitis, and cysteinyl leukotriene (CysLT) overproduction. The interaction between platelets and granulocytes leads to the CysLT overproduction and severe eosinophilic inflammation. The ongoing activation of mast cells is key pathogenesis in not only stable AERD but exacerbated AERD by aspirin. Omalizumab is an effective option for AERD via suppression of mast cell activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevenson DD, Szczeklik A. Clinical and pathologic perspectives on aspirin sensitivity and asthma. J Allergy Clin Immunol. 2006;118:773–86.

    Article  CAS  Google Scholar 

  2. Taniguchi M. Aspirin-exacerbated respiratory disease (AERD). Nippon Naika Gakkai Zasshi. 2013;102(6):1426–32.

    Article  CAS  Google Scholar 

  3. Kowalski ML, Makowska JS, Blanca M, et al. Hypersensitivity to nonsteroidal anti-inflammatory drugs (NSAIDs) -classification, diagnosis and management: review of the EAACI/ENDA(#) and GA2LEN/HANNA. Allergy. 2011;66:818–29.

    Article  CAS  Google Scholar 

  4. Szczeklik A, Sanak M. The role of COX-1 and COX-2 in asthma pathogenesis and its significance in the use of selective inhibitors. Clin Exp Allergy. 2002;32:339–42.

    Article  CAS  Google Scholar 

  5. Morales DR, Lipworth BJ, Guthrie B, et al. Safety risks for patients with aspirin-exacerbated respiratory disease after acute exposure to selective nonsteroidal anti-inflammatory drugs and COX-2 inhibitors: Meta-analysis of controlled clinical trials. J Allergy Clin Immunol. 2014;134(1):40–5.

    Article  CAS  Google Scholar 

  6. Fukutomi Y, Taniguchi M, Tsuburai T, Okada C, Shimoda T, Onaka A, Saka H, Sadakane A, Nakamura K, Akiyama K, National Hospital Organization Research Network for Asthma. Survey of asthma control and anti-asthma medication use among Japanese adult patients. Arerugi. 2010;59(1):37–46.

    PubMed  Google Scholar 

  7. Rajan JP, Wineinger NE, Stevenson DD, White AA. Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: a meta-analysis of the literature. J Allergy Clin Immunol. 2014;135(3):676–81.

    Article  Google Scholar 

  8. Szczeklik A, Nizankowska E, Duplaga M. Natural history of aspirin-induced asthma. AIANE Investigators. European network on aspirin-induced asthma. Eur Respir J. 2000;16:432–6.

    Article  CAS  Google Scholar 

  9. Mascia K, Haselkorn T, Deniz YM, et al. Aspirin sensitivity and severity of asthma: evidence for irreversible airway obstruction in patients with severe or difficult-to-treat asthma. J Allergy Clin Immunol. 2005;116:970–5.

    Article  CAS  Google Scholar 

  10. Group TES. The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma. European network for understanding mechanisms of severe asthma. Eur Respir J. 2003;22:470–7.

    Article  Google Scholar 

  11. Moore WC, Bleecker ER, Curran-Everett D, et al. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J Allergy Clin Immunol. 2007;119:405–13.

    Article  Google Scholar 

  12. Fukutomi Y, Taniguchi M, Tsuburai T, et al. Obesity and aspirin intolerance are risk factors for difficult-to-treat asthma in Japanese non-atopic women. Clin Exp Allergy. 2012;42:738–46.

    Article  CAS  Google Scholar 

  13. Virchow C, Szczeklik A, Bianco S, et al. Intolerance to tartrazine in aspirin-induced asthma: results of a multicenter study. Respiration. 1988;53:20–3.

    Article  CAS  Google Scholar 

  14. Abo M, Fujimura M. Tacholiquine inhalation and aspirin-induced asthma. Chest. 2001;119:670.

    Article  CAS  Google Scholar 

  15. Christie PE, Tagari P, Ford-Hutchinson AW, et al. Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis. 1991;143(5 Pt1):1025–9.

    Article  CAS  Google Scholar 

  16. Kawagishi Y, Mita H, Taniguchi M, et al. Leukotriene C4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J Allergy Clin Immunol. 2002;109:936–42.

    Article  CAS  Google Scholar 

  17. Higashi N, Taniguchi M, Mita H, et al. Clinical features of asthmatic patients with increased urinary leukotriene E4 excretion (hyperleukotrienuria):Involvement of chronic hyperplastic rhinosinusitis with nasal polyposis. J Allergy Clin Immunol. 2004;113:277–83.

    Article  CAS  Google Scholar 

  18. Higashi N, Mita H, Ono E, et al. Profile of eicosanoid generation in aspirin-intolerant asthma and anaphylaxis assessed by new biomarkers. J Allergy Clin Immunol. 2010;125:1084–91.

    Article  CAS  Google Scholar 

  19. Yamaguchi H, Higashi N, Mita H, et al. Urinary concentrations of 15-epimer of lipoxin A(4) are lower in patients with aspirin-intolerant compared with aspirin-tolerant asthma. Clin Exp Allergy. 2011;41:1711–8.

    Article  CAS  Google Scholar 

  20. Picado C, Fernandez-Morata JC, Juan M, et al. Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from aspirin-sensitive asthmatics. Am J Respir Crit Care Med. 1999;160:291–6.

    Article  CAS  Google Scholar 

  21. Pleskow WW, Stevenson DD, Mathison DA, Simon RA, Schatz M, Zeiger RS. Aspirin desensitization in aspirin-sensitive asthmatic patients: clinical manifestations and characterization of the refractory period. J Allergy Clin Immunol. 1982;69(1 Pt 1):11–9.

    Article  CAS  Google Scholar 

  22. Laidlaw TM, Kidder MS, Bhattacharyya N, Xing W, Shen S, Milne GL, Castells MC, Chhay H, Boyce JA. Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood. 2012;119(16):3790–8.

    Article  CAS  Google Scholar 

  23. Mitsui C, Kajiwara K, Hayashi H, et al. Platelet activation markers overexpressed specifically in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137(2):400–11.

    Article  CAS  Google Scholar 

  24. Laidlaw TM, Cahill KN, Cardet JC, Murphy K, Cui J, Dioneda B, Kothari P, Raby BA, Israel E, Boyce JA. A trial of type 12 purinergic (P2Y(12)) receptor inhibition with prasugrel identifies a potentially distinct endotype of patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2018. https://doi.org/10.1016/j.jaci.2018.06.001

  25. Mita H, Endoh S, Kudoh M, Kawagishi Y, Kobayashi M, Taniguchi M, Akiyama K. Possible involvement of mast-cell activation in aspirin provocation of aspirin-induced asthma. Allergy. 2001;56(11):1061–7.

    Article  CAS  Google Scholar 

  26. Higashi N, Taniguchi M, Mita H, Yamaguchi H, Ono E, Akiyama K. Aspirin-intolerant asthma (AIA) assessment using the urinary biomarkers, leukotriene E4 (LTE4) and prostaglandin D2 (PGD2) metabolites. Allergol Int. 2012;61(3):393–403.

    Article  CAS  Google Scholar 

  27. Higashi N, Mita H, Yamaguchi H, Fukutomi Y, Akiyama K, Taniguchi M. Urinary tetranor-PGDM concentrations in aspirin-intolerant asthma and anaphylaxis. J Allergy Clin Immunol. 2012;129(2):557–9.

    Article  CAS  Google Scholar 

  28. Higashi N, Taniguchi M, Mita H, Osame M, Akiyama K. A comparative study of eicosanoid concentrations in sputum and urine in patients with aspirin-intolerant asthma. Clin Exp Allergy. 2002;32(10):1484–90.

    Article  CAS  Google Scholar 

  29. Imokawa S, Sato A, Taniguchi M, Toyoshima M, Nakazawa K, Hayakawa H, Chida K. Sodium cromoglycate nebulized solution has an acute bronchodilative effect in patients with aspirin-intolerant asthma (AIA). Arerugi. 1992;41(10):1515–20.

    CAS  PubMed  Google Scholar 

  30. Mitsui C, Kajiwara K, Ono E, Watai K, Hayashi H, Kamide Y, Fukutomi Y, Sekiya K, Tsuburai T, Yamamoto K, Taniguchi M. Analysis of basophil activation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2017;140(4):1162–4.

    Article  Google Scholar 

  31. White AA, Doherty TA. Role of group 2 innate lymphocytes in aspirin-exacerbated respiratory disease pathogenesis. Am J Rhinol Allergy. 2018;32(1):7–11.

    Article  Google Scholar 

  32. Liu T, Barrett NA, Kanaoka Y, Yoshimoto E, Garofalo D, Cirka H, Feng C, Boyce JA. Type 2 cysteinyl leukotriene receptors drive IL-33-dependent type 2 immunopathology and aspirin sensitivity. J Immunol. 2018;200(3):915–27.

    Article  CAS  Google Scholar 

  33. Liu T, Laidlaw TM, Katz HR, Boyce JA. Prostaglandin E2 deficiency causes a phenotype of aspirin sensitivity that depends on platelets and cysteinyl leukotrienes. Proc Natl Acad Sci U S A. 2013;110(42):16987–92.

    Article  CAS  Google Scholar 

  34. Li H, Bradbury JA, Dackor RT, Edin ML, Graves JP, DeGraff LM, Wang PM, Bortner CD, Maruoka S, Lih FB, Cook DN, Tomer KB, Jetten AM, Zeldin DC. Cyclooxygenase-2 regulates Th17 cell differentiation during allergic lung inflammation. Am J Respir Crit Care Med. 2011;184(1):37–49.

    Article  CAS  Google Scholar 

  35. Harrington LS, Lucas R, McMaster SK, Moreno L, Scadding G, Warner TD, Mitchell JA. COX-1, and not COX-2 activity, regulates airway function: relevance to aspirin-sensitive asthma. FASEB J. 2008;22(11):4005–10.

    Article  CAS  Google Scholar 

  36. Nakata J, Kondo M, Tamaoki J, Takemiya T, Nohara M, Yamagata K, Nagai A. Augmentation of allergic inflammation in the airways of cyclooxygenase-2-deficient mice. Respirology. 2005;10(2):149–56.

    Article  Google Scholar 

  37. Pezato R, Świerczyńska-Krępa M, Niżankowska-Mogilnicka E, Holtappels G, De Ruyck N, Sanak M, Derycke L, Van Crombruggen K, Bachert C, Pérez-Novo CA. Systemic expression of inflammatory mediators in patients with chronic rhinosinusitis and nasal polyps with and without Aspirin Exacerbated Respiratory Disease. Cytokine. 2016;77:157–67.

    Article  CAS  Google Scholar 

  38. Pérez-Novo CA, Kowalski ML, Kuna P, Ptasinska A, Holtappels G, van Cauwenberge P, Gevaert P, Johannson S, Bachert C. Aspirin sensitivity and IgE antibodies to Staphylococcus aureus enterotoxins in nasal polyposis: studies on the relationship. Int Arch Allergy Immunol. 2004;133(3):255–60.

    Article  Google Scholar 

  39. Ying S, Meng Q, Scadding G, Parikh A, Corrigan CJ, Lee TH. Aspirin-sensitive rhinosinusitis is associated with reduced E-prostanoid 2 receptor expression on nasal mucosal inflammatory cells. J Allergy Clin Immunol. 2006;117(2):312–8.

    Article  CAS  Google Scholar 

  40. Roca-Ferrer J, Garcia-Garcia FJ, Pereda J, Perez-Gonzalez M, Pujols L, Alobid I, Mullol J, Picado C. Reduced expression of COXs and production of prostaglandin E(2) in patients with nasal polyps with or without aspirin-intolerant asthma. J Allergy Clin Immunol. 2011;128(1):66–72.

    Article  CAS  Google Scholar 

  41. Hayashi H, Fukutomi Y, Mitsui C, Nakatani E, Watai K, Kamide Y, Sekiya K, Tsuburai T, Ito S, Hasegawa Y, Taniguchi M. Smoking cessation as a possible risk factor for the development of aspirin-exacerbated respiratory disease in smokers. J Allergy Clin Immunol Pract. 2018;6(1):116–125.e3.

    Article  Google Scholar 

  42. Taniguchi M. Measurement of airway hyperresponsiveness and aspirin sensitivity. Arerugi. 2009;58(2):87–96.

    PubMed  Google Scholar 

  43. Szczeklik A. Hypersensitivity to systemic corticosteroids in aspirin-sensitive patients with asthma. J Allergy Clin Immunol. 2011;128:904–5.

    Article  Google Scholar 

  44. Hayashi H, Mitsui C, Nakatani E, Fukutomi Y, Kajiwara K, Watai K, Sekiya K, Tsuburai T, Akiyama K, Hasegawa Y, Taniguchi M. Omalizumab reduces cysteinyl leukotriene and 9α,11β-prostaglandin F2 overproduction in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137(5):1585–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Taniguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taniguchi, M., Mitsui, C., Hayashi, H. (2019). Aspirin-Exacerbated Respiratory Disease (AERD). In: Yokoyama, A. (eds) Advances in Asthma. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-13-2790-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2790-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2789-6

  • Online ISBN: 978-981-13-2790-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics