Skip to main content

Rain Gardens as Stormwater Management Tool

  • Chapter
  • First Online:
Sustainable Green Technologies for Environmental Management

Abstract

Stormwater runoff contributes significantly to urban flooding, groundwater pollution, reduction in water table, surface water quality impairment, etc. as it contains various pollutants that pose risks to life forms. Therefore, management practices must be implemented for mitigating stormwater pollution. Out of the several best management practices (BMPs), rain gardens (also known as bioretention systems (green infrastructures)) is one such practice that is being widely used these days to reduce non-point source pollution arising from urban areas. Physico-chemical and biological features of rain gardens positively helps in remediating contaminants, storing runoff water, reducing peak-flow, nutrient cycling, sequestring heavy metals and also provides supplementary benefits such as recreational facilities. In this chapter, information has been provided on stormwater pollution and use of rain gardens for stormwater treatment. The potential of rain gardens for stormwater treatment has also been critically examined by looking at the present research initiatives taken towards effective implementation of this Green Infrastructure (GI) technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alyaseri, I., Zhou, J., Morgan, S. M., & Bartlett, A. (2017). Initial impacts of rain gardens’ application on water quality and quantity in combined sewer: Field-scale experiment. Frontiers of Environmental Science & Engineering, 11(4), 19. https://doi.org/10.1007/s11783-017-0988-5.

    Article  CAS  Google Scholar 

  • Azah, E., Kim, H., & Townsend, T. (2015). Source of polycyclic aromatic hydrocarbon in roadway and stormwater system maintenance residues. Environment and Earth Science, 74(4), 3029–3039.

    Article  CAS  Google Scholar 

  • Basdeki, A., Katsifarakis, L., & Katsifarakis, L. A. (2016). Rain gardens as an integral parts of urban sewage system- A case study in Thessaliniki, Greece. Procedia Engineering, 162, 426–432.

    Article  Google Scholar 

  • Bjorklund, K., & Li, L. (2017). Removal of organic contaminants in bioretention medium amended with activated carbon from sewage sludge. Environmental Science and Pollution Research, 24, 19167–19180.

    Article  Google Scholar 

  • Boivin, P., Saade, M., Pfeiffer, H. R., Hammecker, C., & Degoumois, Y. (2008). Depuration of highway runoff water into grass-covered embankments. Environmental Technology, 29, 709–720.

    Article  CAS  Google Scholar 

  • Brown, R. A., & Hunt, W. F. (2011). Impacts of media depth on effluent water quality and hydrologic performance of undersized bioretention cells. Journal of Irrigation and Drainage Engineering, 137(3), 132–143.

    Article  Google Scholar 

  • Characklis, G. W., Dilts, M. J., Simmons, O. D., Likirdopulos, C. A., Krometis, L. A. H., & Sobsey, M. D. (2005). Microbial partitioning to settleable particles in stormwater. Water Research, 39, 1773–1782.

    Article  CAS  Google Scholar 

  • Davis, A. P. (2007). Field performance of bioretention: Water quality. Environmental Engineering Science, 24(8), 1048–1064.

    Article  CAS  Google Scholar 

  • Davis, A. P. (2008). Field performance of bioretention: Hydrology impacts. Journal of Hydrologic Engineering, 13(2), 90–95.

    Article  Google Scholar 

  • Davis, A. P., Shokouhian, M., Sharma, H., & Minami, C. (2006). Water quality improvement through bioretention media: Nitrogen and phosphorus removal. Water Environment Research, 78(3), 284–293.

    Article  CAS  Google Scholar 

  • Diblasi, C. J., Li, H., Davis, A. P., & Ghosh, U. (2009). Removal and fate of polycyclic aromatic hydrocarbon pollutants in an urban stormwater bioretention facility. Environmental Science & Technology, 43(2), 494–502.

    Article  CAS  Google Scholar 

  • Dietz, M. E. (2007). Low impact development practices: A review of current research and recommendations for future directions. Water, Air, and Soil Pollution, 186(1–4), 351–363.

    Article  CAS  Google Scholar 

  • Dietz, M. E., & Clausen, J. C. (2005). A field evaluation of rain garden flow and pollutant treatment. Water, Air, and Soil Pollution, 167(1–4), 123–138.

    Article  CAS  Google Scholar 

  • Dietz, M. E., & Clausen, J. C. (2006). Saturation to improve pollutants retention in a rain garden. Environmental Science & Technology, 40(4), 1335–1340.

    Article  CAS  Google Scholar 

  • Endreny, T., & Collins, V. (2009). Implications of bioretention basin spatial arrangements on stormwater recharge and groundwater mounding. Ecological Engineering, 35(5), 670–677.

    Article  Google Scholar 

  • Eriksson, E., Baun, A., Scholes, L., Ledin, A., Ahlman, S., Revitt, M., Noutsopoulos, C., & Mikkelsen, P. S. (2007). Selected stormwater priority pollutants: A European perspective. Science of the Total Environment, 383, 41–51.

    Article  CAS  Google Scholar 

  • Fu, B., Zhao, W., Chen, L., Liu, Z., & Lu, Y. (2005). Eco-hydrological effects of landscape pattern change. Landscape and Ecological Engineering, 1, 25–32.

    Article  Google Scholar 

  • Gallagher, M. T., Snodgrass, J. W., Ownby, D. R., Brand, A. B., Casey, R. E., & Lev, S. (2011). Watershed-scale analysis of pollutant distributions in stormwater management ponds. Urban Ecosystems, 14, 469–484.

    Article  Google Scholar 

  • Glass, C., & Bissouma, S. (2005). Evaluation of a parking lot bioretention cell for removal of stormwater pollutants. WIT Transactions on Ecology and the Environment, 81, 699–708.

    CAS  Google Scholar 

  • Hatt, B. E., Fletcher, T. D., & Deletic, A. (2009). Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology, 365(3), 310–321.

    Article  CAS  Google Scholar 

  • Hostetler, M. (2009). Conserving biodiversity in subdivision development (pp. 71–80). Gainesville: University of Florida.

    Google Scholar 

  • Hsieh, C., & Davis, A. (2005). Evaluation and optimization of bioretention media for treatment of urban storm water runoff. Journal of Environmental Engineering, 131, 1521–1531. https://doi.org/10.1061/(asce)0733-9372(2005)131:11(1521.

    Article  CAS  Google Scholar 

  • Hsieh, C. H., Davis, A. P., & Needelman, B. A. (2007a). Nitrogen removal from urban stormwater runoff through layered bioretention columns. Water Environment Research, 79(12), 2404–2411.

    Article  CAS  Google Scholar 

  • Hsieh, C., Davis, A. P., & Needelman, B. A. (2007b). Bioretention column studies of phosphorus removal from urban stormwater runoff. Water Environment Research, 79(2), 177–184.

    Article  CAS  Google Scholar 

  • http://extensionpublications.unl.edu/assets/pdf/g1758.pdf. Accessed on 10 May 2018.

  • http://www.montgomeryconservation.org/wpcontent/uploads/2012/11/01_raingardenbrochure.pdf. Accessed on 14 May 2018.

  • https://arlingtonva.s3.dualstack.us-east-1.amazonaws.com/wp-content/uploads/sites/13/2016/05/Rain-Garden-Spec-FINAL.pdf. Accessed on 15 May 2018.

  • https://pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/426/426-043/426-043_pdf.pdf. Accessed on 11 May 2018.

  • https://www.crd.bc.ca/education/green-stormwater-infrastructure/rain-gardens. Accessed on 15 May 2018.

  • https://www.fairfaxcounty.gov/soil-water-conservation/sites/soil-waterconservation/files/Assets/images/rgcross_thumb.jpg. Accessed on 14 May 2018.

  • https://www.slideshare.net/SarinaLotlikar/raingarden-education. Accessed on 11 May 2018.

  • Hunt, W. F., Smith, J. T., Jadlocki, S. J., Hathaway, J. M., & Eubanks, P. R. (2008). Pollutant removal and peak flow mitigation by a bioretention cell in Urban Charlotte, N.C. Journal of Environmental Engineering, 134(5), 403–408.

    Article  CAS  Google Scholar 

  • Ishimatsu, K., Ito, K., Mitani, Y., Tanaka, Y., Sugahara, T., & Naka, Y. (2017). Use of rain gardens for stormwater management in urban design and planning. Landscape and Ecological Engineering, 13, 205–212.

    Article  Google Scholar 

  • Jenkins, J. K. G., Wadzuk, B. M., & Welker, A. L. (2010). Fines accumulation and distribution in a storm-water rain garden nine years post construction. Journal of Irrigation and Drainage Engineering, 136(12), 862–869.

    Article  Google Scholar 

  • Katsifarakis, K. L., Vafeiadis, M., & Theodossiou, N. (2015). Sustainable drainage and urban landscape upgrading using rain gardens. Site Selection in Thessaloniki, Greece. Agriculture and Agricultural Science Procedia, 4, 338–347.

    Article  Google Scholar 

  • Kim, H., Seagren, E. A., & Davis, A. P. (2003). Engineered bioretention for removal of nitrate from stormwater runoff. Water Environment Research, 75(4), 355–367.

    Article  CAS  Google Scholar 

  • Kluge, B., Markert, A., Facklam, M., Sommer, H., Kaiser, M., Pallasch, M., & Wessolek, G. (2018). Metal accumulation and hydraulic performance of bioretention systems after long-term operation. Journal of Soils and Sediments, 18, 431–441.

    Article  CAS  Google Scholar 

  • Li, H., & Davis, A. P. (2008). Heavy metal capture and accumulation in bioretention media. Environmental Science & Technology, 42(14), 5247–5253.

    Article  CAS  Google Scholar 

  • Li, L., & Davis, A. P. (2014). Urban stormwater runoff Nitrogen composition and fate in bioretention systems. Environmental Science & Technology, 48(6), 3403–3410.

    Article  CAS  Google Scholar 

  • Lundy, L., Revitt, M., & Bryan, E. B. (2017). An impact assessment for urban stormwater use. Environmental Science and Pollution Research, 25, 1–12. https://doi.org/10.1007/s11356-017-0547-4.

    Article  CAS  Google Scholar 

  • Malaviya, P., & Singh, A. (2012). Constructed wetlands for management of urban stormwater runoff. Critical Reviews in Environmental Science and Technology, 42, 2153–2214.

    Article  CAS  Google Scholar 

  • Muthanna, T. M., Viklander, M., Gjesdahl, N., & Thorolfsson, S. T. (2007a). Heavy metal removal in cold climate bioretention. Water, Air, and Soil Pollution, 183(1–4), 391–402.

    Article  CAS  Google Scholar 

  • Muthanna, T. M., Viklander, M., Blecken, G., & Thorolfsson, S. T. (2007b). Snowmelt pollutant removal in bioretention areas. Water Research, 41(18), 4061–4072.

    Article  CAS  Google Scholar 

  • Ning-Yuan, T., & Tian, L. (2016). Nitrogen removal by three types of bioretention columns under wetting and drying regimes. Journal of Central South University, 23, 324–332.

    Article  Google Scholar 

  • NRC National Research Council. (2008). Urban stormwater management in the United States. Washington, DC: National Academy Press.

    Google Scholar 

  • Oliveri, V. P., Kruse, C. W., Kawata, K., & Smith, J. E. (1977). Microorganisms in urban stormwater. USEPA Report no EPA-600/2-77-087.

    Google Scholar 

  • Piguet, P., Parriaux, A., & Bensimon, M. (2008). The diffuse infiltration of road runoff: An environmental improvement. Science of the Total Environment, 397, 13–23.

    Article  CAS  Google Scholar 

  • Prince George’s County. (1993). Design manual for use of bioretention in stormwater management, Prince George’s County (MD) Government, department of environmental protection. Watershed Protection Branch, Landover, MD.

    Google Scholar 

  • Reddy, K. R., Xie, T., & Dastgheibi, S. (2014). Removal of heavy metals from urban stormwater runoff using different filter materials. Journal of Environmental Chemical Engineering, 2(1), 282–292.

    Article  CAS  Google Scholar 

  • Roy-Poirier, A. (2009). Bioretention for phosphorus removal: Modelling stormwater quality improvements. Master of Science in Engineering thesis, Department of Civil Engineering, Queen’s University, Ontario, Canada 272 p.

    Google Scholar 

  • Rusciano, G. M., & Obropta, C. C. (2007). Bioretention column study: Fecal coliform and total suspended solids reductions. Transactions of the ASABE, 50(4), 1261–1269.

    Article  Google Scholar 

  • Scholes, L., Revitt, D. M., & Ellis, J. B. (2005). The fate of stormwater priority pollutants in BMPs. Public report in the DayWater project. https://www.leesu.fr/daywater/REPORT/D5-3-BMP-Benchmark-2005-04-07.pdf

  • Siriwardene, N. R., Deletic, A., & Fletcher, T. D. (2007). Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study. Water Research, 41(7), 1433–1440.

    Article  CAS  Google Scholar 

  • Steuer, J., Selbig, H. W. N., & Prey, J. (1997). Sources of contamination in an urban basin in Marquette, Michigan and an analysis of concentrations, loads, and data quality. WRI Report 97-4242. Middleton: U.S. Geological Survey.

    Google Scholar 

  • Sweets, P. R. (2013). Assessing the hydrology of indianapolis rain gardens. In Proceedings of the National Conference on Undergraduate Research (NCUR) at University of Wisconsin La Crosse, WI.

    Google Scholar 

  • Taebi, A., & Droste, R. (2004). Pollution loads in urban runoff and sanitary wastewater. Science of the Total Environment, 327, 175–184.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (1995a). National water quality inventory: 1994 report to congress. EPA/841/R-95/005. Washington, DC: U.S. EPA.

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA). (1995b). Urban runoff: Nonpoint source news-notes. Washington, DC: U.S. EPA.

    Google Scholar 

  • U.S. Environmental Protection Agency. (2002). National management measures to control nonpoint source pollution from urban areas-draft. EPA 8421-B-02–003. Washington, DC: U.S. Office of Water.

    Google Scholar 

  • United States Environmental Protection Agency. (2000). Low Impact Development (LID), a literature review. EPA-841-B-00-005, Office of Water, Washington, DC, 20460.

    Google Scholar 

  • Van-Meter, R. J., Swan, C. M., & Snodgrass, J. W. (2011). Salinisation alters ecosystem structure in urban stormwater detention ponds. Urban Ecosystems, 14, 723–736.

    Article  Google Scholar 

  • Wan, Z., Li, T., & Liu, Y. (2018). Effective nitrogen removal during different periods of a field-scale bioretention system. Environmental Science and Pollution Research, 25, 17855–17861. https://doi.org/10.1007/s11356-018-1954-x.

    Article  CAS  Google Scholar 

  • Willard, L. L. (2014). Does it pay to be mature? Assessing the performance of a bioretention cell seven years post-construction. Master of Science in Biological Systems Engineering thesis, Faculty of Virginia Polytechnic Institute, USA 127 p.

    Google Scholar 

  • Wisconsin Natural Resources Magazine. (2003). Rain gardens made one Maryland community famous. https://dnr.wi.gov/wnrmag/html/supps/2003/feb 03/run.htm

  • Zhang, S., & Guo, Y. (2014). Stormwater capture efficiency of bioretention systems. Water Resources Management, 28, 149–168.

    Article  Google Scholar 

  • Zhang, W., Brown, G. O., Storm, D. E., & Zhang, H. (2008). Fly-ash-amended sand as filter media in bioretention cells to improve phosphorus removal. Water Environment Research, 80(6), 507–516.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author (PM) acknowledges the financial support provided by University Grants Commission (UGC) in the form of UGC Research Award.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malaviya, P., Sharma, R., Sharma, P.K. (2019). Rain Gardens as Stormwater Management Tool. In: Shah, S., Venkatramanan, V., Prasad, R. (eds) Sustainable Green Technologies for Environmental Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-2772-8_7

Download citation

Publish with us

Policies and ethics