Skip to main content

Abstract

Coconut palms are grown in diverse environments in different tropical regions of the world. Palms experience several cycles of different stresses during their life period and respond to external factors at morphological, anatomical, physiological, biochemical and molecular levels. Significant developments are made in unravelling the physiological and biochemical mechanisms underlying the productivity performance of coconut in various agroclimatic conditions. Delineating the seedling and adult palm growth, dry matter partitioning, compositional changes in developing nuts, oil and fatty acid profile in germplasm, drought tolerance mechanism, in situ drought-tolerant palms, responses to root (wilt) disease, drought management strategies, response to climatic parameters and climate change impact and adaptations are important milestones in this area of research. Further efforts eventually led to the development of InfoCrop-COCONUT model for simulating growth, development and yield, opening new vistas in research programmes for improving coconut management for higher yields. Since climate change is projected to have positive and negative impacts on coconut yield depending on the region, it is important to use advanced technologies for harnessing positive impacts while countering measures for overcoming the negative effects. This chapter summarizes the major research understandings in physiology and biochemistry of coconut palms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeywardena (1968) Forecasting coconut crops using rain fall data. III Session of FAO Tech working party on coconut production, protection and processing. Jakarta, Indonesia. LCNP 68(29):49

    Google Scholar 

  • Anbalagan R, Shanmugam N, Bhaskaran R, Vijayaraghavan H (1987) Biochemical constituents of coconut palms as influenced by Thanjavur Wilt disease. Abstracts of international symposium on Ganoderma wilt disease on palms and other perennial crops. Tamil Nadu Agricultural University, Coimbatore, pp 17–18

    Google Scholar 

  • Balasubramaniam K (1976) Polysaccharides of the maturing and matured coconuts. J Food Sci 47:1307–1337

    Google Scholar 

  • Balasubramaniam K (1983) Biochemical changes in coconut during maturation and germination. In: Nayar NM (ed) Coconut research & development. Wiley Eastern Ltd., New Delhi, pp 221–228

    Google Scholar 

  • Balasubramaniam K, Alles NH (1989) A preliminary study of the invertase activity in coconut. Ann Bot 64:253–257

    Article  CAS  Google Scholar 

  • Balasubramaniam K, Atukorala TMS, Wijesundara S, Hoover AA, De Silva MAT (1973) Biochemical changes during germination of the coconut. Ann Bot 37:439–445

    Article  Google Scholar 

  • Balasubramaniam K, Sothary RD, De Silva MAT (1974) Nutritional studies on initial flowering of coconut (Var. Typica) III. Free amino acids in leaves of bearing and non- bearing palms. Ceylon Cocon Qtly 25:149–152

    Google Scholar 

  • Baptist NG (1956) L-amino acid and other free amino acids in the coconut. Nature 178:1403–1404

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar SP, Johri BM (1972) In: Kozlowski TT (ed) Seed biology, vol 1. Academic Press, New York, p 78

    Google Scholar 

  • Bobby P, Rajesh MK, Naresh Kumar S (2012) Molecular cloning and characterization of a partial mitogen-activated protein kinase cDNA, CnMAPK1 induced in response to water stress in coconut. Indian J Hortic 69(2):145–150

    Google Scholar 

  • Braconnier S, Bonneau X (1998) Effects of chlorine deficiency in the field on leaf gas exchanges in the PB121 coconut hybrid. Agronomie 18(8–9):563–572

    Article  Google Scholar 

  • Chempakam B, Rajagopal V, Gopalam A (1991) Identification of biochemical constituents in die phloem sap from root(wilt) diseased and apparently healthy coconut palms. Plant Physiol Biochem 18:21–25

    Google Scholar 

  • Chempakam B, Kasturi Bai KV, Rajagopal V (1993) Lipid peroxidation and associated enzyme activities in relation to screening for drought tolerance in coconut (Cocos nucifera L.). Plant Physiol Biochem 20:5–10

    Google Scholar 

  • Child R (1964) Coconuts. Longmans, London, p 216

    Google Scholar 

  • Corley RHV (1983) Potential productivity of tropical perennial crops. Exp Agric 19:217–237

    Article  Google Scholar 

  • Cutter VM Jr, Wilson KS, Freeman B (1955) Nuclear behaviour and cell formation in the developing endosperm of Cocos nucifera. American J Bot 42(2):109–115

    Article  Google Scholar 

  • Datt B (1999) A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J Plant Physiol 154:30–36

    Article  CAS  Google Scholar 

  • De Silva MAT, Abeywardena V, George GD, Balasubramaniam K (1973) Nutritional studies on initial flowering of coconut (var. typica). Effect of Mg deficiency and Mg-P relationship. Ceylon Cocon Qtly 24:107–113

    Google Scholar 

  • Deshpande BR, Kulkarni VG (1962) Studies on germination of coconut. Part 1. Cocon Bull 16:336–338

    Google Scholar 

  • Dix L, Van Staden J (1982) Auxin and Gibberellin -like substances in coconut milk and malt extract. Plant Cell Tissue Organ Cult 1:239–246

    Article  CAS  Google Scholar 

  • Dwivedi RS, Ray PK, Ninan S (1979) Absorption, distribution and utilisation of radioactive phosphorus in unhealthy and root (wilt) diseased coconut palms. J Nucl Agric Biol 8:33–35

    CAS  Google Scholar 

  • Eden G, Waters H (1982) Collection and properties of phloem sap from healthy and lethal yellowing diseased coconut palms in Jamaica. Phytopathol 72:667–672

    Article  Google Scholar 

  • Escbach JM, Massimino D, Mendoza MR (1982) Effect of chlorine deficiency on germination, growth and photosynthesis of coconut. Oleagineux 37:115–125

    Google Scholar 

  • Eskafi F, Basham H, Mc Coy R (1986) Decreased water transport in lethal yellowing diseased coconut palms. Trop Agric 63:225–228

    Google Scholar 

  • Espino RB (1923) On the germination of coconut seedlings. Philippine Agric 11:191–200

    Google Scholar 

  • Foale MA (1968) The growth of the young coconut palm (Cocos nucifera L.). 1. The role of the seed and photosynthesis in seedling growth up to 17 months of age. J Agric Res 19:781–789

    Article  Google Scholar 

  • Foale MA (1993) Physiological basis for yield in coconut. In: Nair MK, Khan HH, Gopalasundaram P, Rao EVVB (eds) Advances in coconut research and development. Oxford & IBH Publishing Co., New Delhi, pp 181–189

    Google Scholar 

  • Fremond Y, De Lamothe MDN (1966) Dechracteristiaues et production de cocotier hybrids Nain jaune “Malaisie x Grand ouest African”. Oleagineux 26:459–464

    Google Scholar 

  • Friend D, Corley RHV (1994) Measuring coconut palm dry matter production. Exp Agric 30:223–235

    Article  Google Scholar 

  • Gomes FP, Prado CHBA (2007) Ecophysiology of coconut palm under water stress. Brazilian J Plant Physiol 19:377–391

    Google Scholar 

  • Gomes FP, Mielke MS, Almeida A-AF (2002) Leaf gas exchange of green dwarf coconut (Cocos nucifera L. var. nana) in two contrasting environments of the Brazilian north-east region. J Hortic Sci Biotechnol 77:766–772

    Article  Google Scholar 

  • Gomes FP, Oliva MA, Mielke MS, Almeida A-AF, Leite HG, Aquino LA (2007) Photosynthetic limitations in leaves of young Brazilian Green Dwarf coconut (Cocos nucifera L. ‘nana’) palm under well-watered conditions or recovering from drought stress. Environ Exp Bot 62(3):195–204. https://doi.org/10.1016/j.envexpbot.2007.08.006

    Article  CAS  Google Scholar 

  • Gomes FP, Marco MAO, Mielke S, de Almeida AAF, Leite HG, Aquino LA (2008) Photosynthetic limitations in leaves of young Brazilian Green Dwarf coconut (Cocos nucifera L. ‘nana’) palm under well-watered conditions or recovering from drought stress. Environ Exp Bot 62:195–204

    Article  CAS  Google Scholar 

  • Hagenmaier R, Cater CM, Mattil KF (1972) A characterization of two chromatographically separated fractions of coconut protein. J Food Sci 37:4–7

    Article  CAS  Google Scholar 

  • Hebbar KB, Chaturvedi VK (2015) Impact and adaptation strategies of coconut to climate change. In Proceedings of Kerala Environment Congress-2015, Centre for Environment and Development, Thiruvananthapuram, India, May 06–08, 2015, pp 73–78

    Google Scholar 

  • Hebbar KB, Chowdappa P (2016) Transforming coconut farmer into entrepreneur. In ICAR-CPCRI 2016- Centenary Souvenir-1916 to 2016, pp 75–83

    Google Scholar 

  • Hebbar KB, Mathew AC, Arivalagan M, Samsudeen K, Thomas GV (2013) Value added products from Neera. Indian Cocon J LVI(4):28–33

    Google Scholar 

  • Hebbar KB, Arivalagan M, Manikantan MR, Mathew AC, Thamban C, Thomas GV, Chowdappa P (2015a) Coconut inflorescence sap and its value addition as sugar – collection techniques, yield, properties and market perspective. Curr Sci 109. https://doi.org/10.18520/v109/i8/1411-1417

    Article  CAS  Google Scholar 

  • Hebbar K B, Arivalagan M, Manikantan MR, Mathew AC, Chowdappa P (2015b) Kalparasa collection and value addition. Technical Bulletin No. 92, ICAR-CPCRI, Kasaragod, Kerala, India, p 28

    Google Scholar 

  • Hebbar KB, Mukesh Kumar B, Chaturvedi VK (2016a) Plantation crops: climatic risks and adaptation strategies. Indian J Plant Physiol. https://doi.org/10.1007/s40502-016-0265-9

    Article  Google Scholar 

  • Hebbar KB, Mukesh Kumar B, Arivalagan M, Chaturvedi VK (2016b) Physiological and biochemical response of coconut to climate change variables. In: Hebbar KB, Naresh Kumar S, Chowdappa P (eds) Impact of climate change on plantation crops. Daya Publishing House, New Delhi, pp 45–60

    Google Scholar 

  • Hebbar KB, Subramanian P, Sheena TL, Shweta K, Sugatha P, Arivalagan M, Prasad PVV (2016c) Chlorophyll and nitrogen determination in coconut using a non-destructive method. J Plant Nutr 39(11):1610–1619. https://doi.org/10.1080/01904167.2016.1161781

    Article  CAS  Google Scholar 

  • Jayalakshmy A, Arumugham CS, Narayanan C, Mathew AG (1988) Changes in chemical composition of coconut water during maturation. Oleagineux 43:409–414

    Google Scholar 

  • Jayasekara C, Mathes DT (1992) A method to determine leaf area of a frond and the whole canopy of an adult palm. Indian Cocon J 23:7–13

    Google Scholar 

  • Jayasekara C, Nainanayake NPAD, Jayasekara KS (1996) Photosynthetic characteristics and productivity of the coconut palm. COCOS 11:7–20

    Article  Google Scholar 

  • Juliano JB (1926) Origin, development and nature of the stony layer of the coconut (Cocos nucifera L.) Philippine. J Sci 30:187–200

    Google Scholar 

  • Kamala Devi CB, Velayudham M (1978) Changes in the chemical composition of nut water and kernel during development of coconut. In: Nelliat EV (ed) Proceedings of PLACROSYM I. Indian Society for Plantation Crops, Kasaragod, pp 340–346

    Google Scholar 

  • Kartha ARS (1981) Embryo of coconut and its germination – a short scientific note. J Plantn Crops 9(2):125–127

    Google Scholar 

  • Kasturi Bai KV (1993) Evaluation of coconut germplasm for drought tolerance. Ph.D. Thesis, Mangalore University, Mangalore, India, pp 257

    Google Scholar 

  • Kasturi Bai KV, Rajagopal V (2000) Osmotic adjustment as a mechanism for drought tolerance in coconut (Cocos nucifera L.). Indian J Plant Physiol 5(4):320–323

    Google Scholar 

  • Kasturi Bai KV, Ramadasan A (1978) Changes in leaf carbohydrates in relation to commencement of flowering in coconut palm. In: Nelliat EV (ed) Proceedings of PLACROSYM I. Indian Society for Plantation Crops, Kasaragod, pp 321–330

    Google Scholar 

  • Kasturi Bai KV, Ramadasan A (1982) Changes in the carbohydrate fractions in relation to female flower production in coconut. J Plantn Crops 10(2):124–126

    Google Scholar 

  • Kasturi Bai KV, Ramadasan A (1983) Changes in the levels of carbohydrate as a function of environmental variables in hybrids and tall coconut palms. In: Nayar NM (ed) Coconut research and development. Wiley Eastern Limited, New Delhi, pp 203–209

    Google Scholar 

  • Kasturi Bai KV, Ramadasan A (1990) Growth studies in coconut seedlings. J Plantn Crops 18(2):130–133

    Google Scholar 

  • Kasturi Bai KV, Voleti SR, Rajagopal V (1988) Water relations of coconut palms as influenced by environmental variables. Agric For Meteorol 43:193–199

    Article  Google Scholar 

  • Kasturi Bai KV, Rajagopal V, Prabha CD, Ratnambal MJ, George MV (1996a) Evaluation of coconut cultivars and hybrids for dry matter production. J Plantn Crops 24:23–28

    Google Scholar 

  • Kasturi Bai KV, Rajagopal V, Chempakam B, Prabha C (1996b) Assay of enzymes in coconut cultivars and hybrids under non-stress and stress condition. J Plantn Crops 24:548–554

    Google Scholar 

  • Kasturi Bai KV, Rajagopal V, Balasimha D, Gopalasundaram P (1997) Water relation, gas exchange and dry matter production in coconut (Cocos nucifera L.) under un-irrigated and irrigated conditions. CORD XIII(2):45–58

    Google Scholar 

  • Kasturi Bai KV, Rajagopal V, Arunachalam V (2006a) Assessment of diversity in coconut varieties for drought responsive physiological traits. J Plantn Crops 34(2):118–120

    Google Scholar 

  • Kasturi Bai KV, Rajagopal V, Naresh Kumar S (2006b) Chlorophyll fluorescence transients with response to leaf water status in coconut. Indian J Plant Physiol 11:410–414

    Google Scholar 

  • Kasturi Bai KV, Naresh Kumar S, Rajagopal V, Vijayakumar K (2008) Principal component analysis of chlorophyll fluorescence transients for tolerance to drought stress in coconut seedlings. Indian J Hortic 65(4):471–476

    Google Scholar 

  • Kasturi Bai KV, Sugatha P, Muralikrishna KS, John Sunoj VS (2011) Physio chemical changes in coconut leaf at different maturity stages. J Plantn Crops 39:319–321

    Google Scholar 

  • Kooiman P (1971) Structure of the galactomannans from seeds of Annona muricata, Arenga saccharifera. Cocos nucifera, Convolvurus tricolor and Sophora japonica. Carbohydr Res 20:329–337

    Article  CAS  PubMed  Google Scholar 

  • Kurup VVGK, Voleti SR, Rajagopal V (1993) Influence of weather variables on the content and composition of leaf surface wax in coconut. J Plantn Crops 2:71–80

    Google Scholar 

  • Lakmini WGD, Nainanayake NPAD, De Costa WAJM (2006) Biochemical changes of four different coconut (Cocos nucifera L.) forms under moisture stress conditions. J Agric Sci 2(3):1–7

    Google Scholar 

  • Lebrun P, N’cho YP, Seguin M, Grivet L, Baudouin L (1998) Genetic diversity in coconut (Cocos nucifera L.) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101:103-1081-6 Available from: https://www.researchgate.net/publication/313476956_Biotechnology_of_Plantation_Crops_Coconut

    Article  CAS  Google Scholar 

  • Lebrun P, Grivet L, Baudouin L (1999) Use of RFLP markers to study the diversity of the coconut palm. In: Santamaria JM (ed) Current plant science and biotechnology in agriculture-current advances in coconut biotechnology. Kluwer Academic Publishers, Dordrecht, pp 73–87

    Chapter  Google Scholar 

  • Leon R, Alpizar L, Escamilla A, Santamariaj J, Oropeza C (1995) Physiological and biochemical changes in shoots of lethal yellowing-affected coconut palms. New Phytol 134:227–234. http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1996.tb04627.x/pdf

  • Lima BL, de Lacerda CF, Miguel Ferreira Neto, da Silva Ferreira JF, Bezerra AME, Marques EC (2017) Physiological and ionic changes in dwarf coconut seedlings irrigated with saline water. Rev Brasilian eng agríc ambient. [online]. vol. 21, n. 2, pp 122–127 ISSN 1415-4366. https://doi.org/10.1590/1807-1929/agriambi.v21n2p122-127

    Article  Google Scholar 

  • Liyanage DV (1952) Report of the acting botanist, annual report of coconut research scheme for 1950. Ceylon Government sessional paper. 14:22–30

    Google Scholar 

  • Liyanage DV (1953) Selection of coconut seed nuts and seedlings. Ceylon Cocon Qtly 4:127–129

    Google Scholar 

  • Lumige LC (1969) A note on the effects of coconut water transfusion on the germination and growth of water less coconuts. Philippine J Plant Ind 34:34–39

    Google Scholar 

  • Manimekalai R, Nagarajan P, Bharathi M, Naresh Kumar S (2004) DNA polymorphism among coconut (Cocos nucifera) cultivars and reciprocal cross derivatives. J Plantn Crops 32(suppl):17–122

    Google Scholar 

  • Manimekalai R, Nagarajan P, Bharathi M, Karun A, Naresh Kumar S, Kumaran PM (2005) Genetic variation of selected progeny lines of coconut (Cocos nucifera L.) based on simple sequence repeat markers. Trop Agri Res (Sri Lanka) 17:58–66

    Google Scholar 

  • Manjula C (1990) Physiological and biochemical changes during the germination of coconut seeds. M.Phil Dissertation, Mangalore University, India, pp 79

    Google Scholar 

  • Manjula C, Champakam B, Rajagopal V (1993) Solubilization and utilization of seed reserve during germination of coconut. J Plantn Crops 21(suppl):313–321

    Google Scholar 

  • Manjula C, Champakam B, Rajagopal V (1995) Changes in nut water constituents during seed germination in coconut. Plant Physiol Biochem 22(2):169–172

    Google Scholar 

  • Mathes DT (1984) Effect of extraction of inflorescence sap and the removal of immature fruit bunches on the production of female flowers in coconut. COCOS 2:44–47

    Article  Google Scholar 

  • Mc Coy RE, Howard FW, Tsai JH, Donselman HM, Thomas DL, Basham HG, Atilano RA, Eskafi FM, Britt L, Collins ME (1983) Lethal yellowing of palms. Univ Florida Agric Exp Stn Bull No. 834

    Google Scholar 

  • McDonough J, Zimmermann J (1979) Effect of lethal yellowing on xylem pressure in coconut palms. Principes 66:1038–1042

    Google Scholar 

  • Menon KPV, Pandalai KM (1960) The coconut palm. A monograph. Indian Central Coconut Committee, Kochi, Kerala, India, p 303

    Google Scholar 

  • Mialet-Serra I, Clément A, Sonderegger N, Roupsard O, Jourdan C, Labouisse JP, Dingkuhn M (2005) Assimilate storage in vegetative organs of coconut (Cocos nucifera L.). Exp Agric 41:1–14

    Article  CAS  Google Scholar 

  • Mialet-Serra A, Clement-Vidal A, Roupsard O, Jourdan C, Dingkuhn M (2008) Whole-plant adjustments in coconut (Cocos nucifera) in response to sink–source imbalance. Tree Physiol 28(8):1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Michael KJ (1978) Respiratory rate and nut yield in root (wilt) diseased coconut palms. J Plantn Crops 6:1–3

    Google Scholar 

  • Mondal H, Mandal RK, Biswas BB (1970) Absence of free nuclei in coconut water as revealed from biochemical studies. Nucleus 13:10–18

    CAS  Google Scholar 

  • Monera OD, Del Rosario EJ (1982) Physiochemical evaluation of the natural stability of coconut milk emulsion. Ann Trop Res 4:47–54

    Google Scholar 

  • Mujer CV, Ramirez DA, Mendoza EMT (1984a) L-D- Galactosidase deficiency in coconut endosperm. Its possible pleiotropic effects in makapuno. Phytochemistry 23(4):893–894

    Article  CAS  Google Scholar 

  • Mujer CV, Ramirez DA, Mendoza EMT (1984b) Coconut L-D Galactosidase isoenzymes isolation, purification and characterisation. Phytochemistry 23(6):251–1254

    Google Scholar 

  • Mukesh Kumar B, Sugatha P, Niral V, Hebbar KB (2016) Variability in superoxide dismutase isoforms in tall and dwarf cultivars of coconut (Cocos nucifera L.) leaves. Indian J Agric Biochem 29(2):184–188. https://doi.org/10.5958/0974-4479.2016.00029.0

    Article  CAS  Google Scholar 

  • Nainanayake AD (2007) Use of chlorophyll fluorescence parameters to assess drought tolerance of coconut varieties. COCOS 18:77–105

    Google Scholar 

  • Naresh Kumar S (2007) Capillary gas chromatography method for fatty acid analysis of coconut oil. J Plantn Crops 35(1):23–27

    Google Scholar 

  • Naresh Kumar S (2009) Carbon sequestration in coconut plantations. In: Aggarwal PK (ed) Global climate change and Indian agriculture-case studies from ICAR network project. ICAR, New Delhi, pp 129–134

    Google Scholar 

  • Naresh Kumar S (2011a) Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil. J Agric Food Chem 59(24):3050–13058

    Google Scholar 

  • Naresh Kumar S (2011b) Climate change and Indian agriculture: current understanding on impacts, adaptation, vulnerability and mitigation. J Plant Biol 37(2):1–16

    Google Scholar 

  • Naresh Kumar S, Aggarwal PK (2013) Climate change and coconut plantations in India: impacts and potential adaptation gains. Agric Syst 117:45–54

    Article  Google Scholar 

  • Naresh Kumar S, Balakrishnan A (2009) Seasonal variations in fatty acid composition of oil in developing coconut. J Food Qual (USA) 32:158–176

    Article  CAS  Google Scholar 

  • Naresh Kumar S, Balakrishnan A (2012) Quality and fatty acids of coconut oil under different conditions and duration of storage. Indian J Plant Physiol 17(1) NS:79–83

    Google Scholar 

  • Naresh Kumar S, Kasturi Bai KV (2009a) Photo-oxidative stress in coconut seedlings: early events to leaf scorching and seedling death. Brazilian J Plant Physiol 21(3):223–232

    Article  Google Scholar 

  • Naresh Kumar S, Kasturi Bai KV (2009b) Photosynthetic characters in different shapes of coconut canopy under irrigated and rainfed conditions. Indian J Plant Physiol 14(3) NS:215-223

    Google Scholar 

  • Naresh Kumar S, Rajagopal V, Karun A (2000a) Leaflet anatomical adaptations in coconut cultivars for drought tolerance, Recent advances in plantation crops research. CPCRI, Kasaragod, pp 225–229

    Google Scholar 

  • Naresh Kumar S, Champakam B, Rajagopal V (2000b) Fatty acid composition of coconut oil among the cultivars – an insight into industrial application. Indian Cocon J 31(3):25–28

    Google Scholar 

  • Naresh Kumar, Rajagopal V, Karun A (2001) Photosynthetic acclimatization in zygotic embryo cultured plantlets of coconut (Cocos nucifera L.). CORD 18(2):1–12

    Google Scholar 

  • Naresh Kumar S, Rajagopal V, Laxman RH, Dhanapal R, Maheswarappa HP (2002a) Photosynthetic characteristics and water relations in coconut palms under drip irrigation levels. In: Rathinam P, Khan HH, Reddy VM, Mandal PK, Suresh K (eds) Proceedings of PLACROSYM XIV. ‘Plantation Crops Research and development in new Millennium’ Coconut Development Board, Kochi, pp 116–120

    Google Scholar 

  • Naresh Kumar S, Rajagopal V, Siju Thomas T, Cherian VK, Hanumanthappa M, Kumar A, Sreenivasulu B, Nagvekar D (2002b) Identification and characterization of in situ drought tolerant coconut palms in farmer’s fields under different agro-climatic zones. In: Sreedharan K, Vinod Kumar PK, Jayarama (eds) Proceedings of PLACROSYM XV. Indian Society for Plantation Crops, Kasaragod, pp 335–339

    Google Scholar 

  • Naresh Kumar S, Champakam B, Rajagopal V (2004) Variability in coconut cultivars for lipid and fatty acid composition of oil. Trop Agric (Trinidad and Tobago) 81(1):34–40

    Google Scholar 

  • Naresh Kumar S, Rajagopal V, Kasturi Bai KV (2006a) Adaptive strategies of coconut palm under stressful conditions. In: Hemantharanjan A (ed) Advances in plant physiology, vol 9. Scientific Publishers, Jodhpur, pp 155–167

    Google Scholar 

  • Naresh Kumar S, Rajagopal V, Siju Thomas T, Cherian VK (2006b) Effect of conserved soil moisture on the source-sink relationship in coconut (Cocos nucifera L.) under different agro-climatic conditions in India. Indian J Agric Sci 76(5):277–281

    Google Scholar 

  • Naresh Kumar S, Kasturi Bai KV, George J, Balakrishnan A, Thomas ST (2007a) Stress responsive proteins in coconut seedlings subjected to water, high- Light, and flooding and high- temperature stresses. Indian J Hortic 64(4):373–380

    Google Scholar 

  • Naresh Kumar S, Rajagopal V, Siju Thomas T, Cherian VK, Ratheesh Narayanan MK, Ananda KS, Nagawekar DD, Hanumanthappa M, Vincent S, Srinivasulu B (2007b) Variations in nut yield of coconut (Cocos nucifera L.) and dry spell in different agroclimatic zones of India. Indian J Hortic 64:309–313

    Google Scholar 

  • Naresh Kumar S, Kasturi Bai KV, George J (2008a) A method for non-destructive estimation of dry weight of coconut stem. J Plantn Crops 36(3):296–299

    Google Scholar 

  • Naresh Kumar S, Kasturi Bai KV, Rajagopal V, Aggarwal PK (2008b) Simulating coconut growth, development and yield using Info Crop-coconut model. Tree Physiol (Canada) 28:1049–1058

    Article  Google Scholar 

  • Naresh Kumar S, Rajagopal V, Cherian VK, Siju Thomas T, Sreenivasulu B, Nagvekar DD, Hanumanthappa M, Bhaskaran R, Vijaya Kumar K, Ratheesh Narayanan MK, Amarnath CH (2009a) Weather data based descriptive models for prediction of coconut yield in different agro-climatic zones of India. Indian J Hortic 66(1):88–94

    Google Scholar 

  • Naresh Kumar S, Rajeev MS, Vinayan, Nagwekar DD, Venkitaswmy R, Raghava Rao DV, Boraiah B, Gawankar MS, Dhanapal R, Patil DV, Kasturi Bai KV (2009b) Trends in weather and yield changes in past in coconut growing areas in India. J Agrometeorol 11(1):15–18

    Google Scholar 

  • Naresh Kumar S, John Sunoj, Muralikrishna KS (2016a) Impacts of climate change. In: Chowdappa P, Niral V, Jerard BA, Samsudeen K (eds) Coconut. Daya Publishing House, New Delhi, pp 355–374

    Google Scholar 

  • Naresh Kumar S, Rajagopal V, Kasturi Bai KV (2016b) Abiotic stress tolerance in horticultural crops: coconut and arecanut. In: Srinivasa Rao NK, Shivashankara KS, Laxman RH (eds) Abiotic stress physiology of horticultural crops. Springer, New Delhi, pp 269–306

    Chapter  Google Scholar 

  • Natara Ian S, Bhaskaran R, Shanmugam N (1986) Preliminary studies to develop techniques for early detection of Thanjavur Wilt in coconut. Indian Cocon J 17(3):3–6

    Google Scholar 

  • Nathanael WRN (1967) Report of the chemist. Ceylon Cocon Qtly 18:15–35

    Google Scholar 

  • Nelliat EV, Nair PKR, Kushwaha BL (1976) Effect of month of harvest of seed nuts and fertilizer application to nursery on vigour and quality of coconut seedlings. J Plantn Crops 4:16–20

    Google Scholar 

  • Nogueira LC, Nogueira LRQ, Miranda FR (1998) Irrigação do coqueiro. In: JMS F, DRN W, Siqueira LA (eds) A cultura do Coqueiro no Brasil. EMBRAPA, Brasília, pp 159–187

    Google Scholar 

  • Ollagnier M, Ochs R, Pomier M, De Taffin G (1983) Effect of chlorine on the hybrid coconut P.B. 121 – in the Ivory Coast and Indonesia – Growth, tolerance to drought, yield. Oleagineux 38(5):309–321

    CAS  Google Scholar 

  • Oo KC, Stumpf PK (1979) Fatty acid biosynthesis in the developing endosperm of Cocos nucifera. Lipids 14(2):132–143

    Article  CAS  Google Scholar 

  • Oropeza C, Alpizar L, Islas-Flores I, Escamilla A, Santa-Maria J (1995) Physiology and biochemistry of lethal yellowing affected Cocos nucifera palms. In: Oropeza et al (eds) Lethal yellowing: research and practical aspects. Kluwer Academic Publishers, Dordrecht, pp 65–67

    Chapter  Google Scholar 

  • Padmaja G, Sumathykutty Amma B (1979) Cellulose activity in the roots of coconut affected by root (wilt) disease. J Plantn Crops 7:101–104

    Google Scholar 

  • Padmaja G, Sumathy Kutty Amma B, Mathew C, Ray PK, Dwivedi RS (1980) Carbonic anhydrase activity versus acidity in low yielding and high yielding coconut palms. Indian J Exp Biol 18(10):1209–1211

    CAS  Google Scholar 

  • Padmaja G, Sumathykutty Amma B, Mathew C, Nambiar PTN, Dwivedi RS (1981) Alterations in the leaf protein content of coconut affected by root (wilt) disease. Indian J Plant Physiol 24:42–46

    Google Scholar 

  • Padua - Resurreccion AN, Banzon JA (1979) Fatty acid composition of the oil from progressively maturing bunches of coconut. Philippine J Cocon Stud 4(3):1–16

    Google Scholar 

  • Passos EEM, Silva JV (1990) Fonctionnement des stomates de cocotier (Cocos nucifera) au champ. Can J Bot 68:458–460

    Article  Google Scholar 

  • Passos EEM, Passos CD, Aragão WM (2003) Trocas gasosas em genótipos de coqueiro anão sob condições de deficiência hídrica. Aracaju, Embrapa Tabuleiro Costeiros (Comunicado Técnico 11), p 20

    Google Scholar 

  • Passos CD, Passos EEM, Prado CHBA (2005) Comportamento sazonal do potencial hídrico e das trocas gasosas de quatro variedades de coqueiroanão. Rev Bras Frutic 27:248–254

    Article  Google Scholar 

  • Patel JS (1938) The coconut. A monograph. Govt Press, Madras, p 102

    Google Scholar 

  • Peiris TGS, Thattil RO (1998) The study of climate effects on nut yield of coconut using parsimonious models. Exp Agric 34:189–206

    Article  Google Scholar 

  • Peiris TGS, Thattil RO, Mahidapala R (1995) An analysis of the effect of climate and weather on coconut. Exp Agric 31:451–460

    Article  Google Scholar 

  • Pillai RV, Nair RB, Mathew C, Bavappa KVA, Ramadasan A (1973) Studies on photoperiodic responsive reaction in coconut. J Plantn Crops l(Suppl):89–92

    Google Scholar 

  • Pomier M, De Taffin G (1982) The tolerance to drought of some coconut hybrids. Oleagineux 37(2):55–62

    Google Scholar 

  • Prado CHBA, Passos EEM, Moraes JAPV (2001) Photosynthesis and water relations of six tall genotypes of Cocos nucifera in wet and dry seasons. S African J Bot 67:169–176

    Article  Google Scholar 

  • Rajagopal V (1991) Is water stress associated with root (wilt) disease of coconut? J Plantn Crops 19:91–101

    Google Scholar 

  • Rajagopal V, Kasturi Bai KV (2002) Drought tolerance mechanism in coconut. Bur Bull 17:21–22

    Google Scholar 

  • Rajagopal V, Naresh Kumar S (2001) Avenues to improve productivity potential under drought condition-A case study on coconut. In: Abstracts of National Seminar on role of plant physiology for sustaining quality and quantity of food production in relation to environment. 5–7 Dec 2001, UAS, Dharwad

    Google Scholar 

  • Rajagopal V, Patil KD, Sumathykutty Amma B (1986) Abnormal stomatal opening in coconut palms affected with root (wilt) disease. J Exp Bot 37:398–1405

    Article  Google Scholar 

  • Rajagopal V, Sumathykutty Amma B, Patil KD (1987) Water relations of coconut palms affected with root (wilt) disease. New Phytol 105:289–293

    Article  Google Scholar 

  • Rajagopal V, Shivashankar S, Kasturi Bai KV, Voleti SR (1988) Leaf water potential as an index of drought tolerance in coconut. Plant Physiol Biochem 15:80–86

    Google Scholar 

  • Rajagopal V, Chempakam B, Robert Cecil S, Kamalakshy Amma PG (1989a) Studies on phloem sap collection from healthy and root (wilt) diseased coconut palms (Cocos nucifera. L.). Plant Physiol Biochem 16:52–56

    Google Scholar 

  • Rajagopal V, Ramadasan A, Kasturi Bai KV, Balasimha D (1989b) Influence of irrigation on leaf water relations and dry matter production in coconut palms. Irrig Sci 10(1):73–81

    Article  Google Scholar 

  • Rajagopal V, Kasthuri Bai KV, Voleti SR (1990) Screening of coconut genotypes for drought tolerance. Oleagineux 45:215–223

    Google Scholar 

  • Rajagopal V, Voleti SR, Kasturi Bai KV, Shivashankar S (1991) Physiological and biochemical criteria for breeding for drought tolerance in coconut. In: Silas EG, Aravindakshan M, Jose AI (eds) Coconut breeding and management. Kerala Agricultural University, Thrissur, pp 136–143

    Google Scholar 

  • Rajagopal V, Shivashankar S, Jacob M (1996) Impact of dry spells on ontogeny of coconut fruits and it’s relation to yield. Plant Res Dev 3:251–255

    Google Scholar 

  • Rajagopal V, Naresh Kumar S, Kasturi Bai KV, Laxman RH (2000a) Day time fluctuations in photosynthetic parameters and water relations in juvenile palms of coconut grown under rainfed and irrigated conditions. J Plant Biol 27:27–32

    Google Scholar 

  • Rajagopal V, Kasturi Bai KV, Naresh Kumar S (2000b) Adaptive mechanism of coconut palms in the changing environment conditions for higher production. In: Extended summaries Vol 2. Natural Resources- Agrobiodiversity, International conference on managing natural resources for sustainable agricultural production in the 21st century, New Delhi, pp 778–779

    Google Scholar 

  • Rajagopal V, Kasturi Bai KV, Naresh Kumar S (2005) Breeding for drought tolerance in coconut: status and potentials. In: Batugal P, Ramanatha Rao V, Oliver J (eds) Coconut genetic resources. IPGRI publication, IPGRI-Regional Office for Asia, The Pacific and Oceania, Serdang, pp 282–301

    Google Scholar 

  • Rajagopal V, Kasturi Bai KV, Naresh Kumar S, Niral V (2007) Genetic analysis of drought responsive physiological characters in coconut (Cocos nucifera L.). Indian J Hortic 64(2):181–189

    Google Scholar 

  • Rajesh MK, Sabana AA, Rachana KE, Rahman S, Jerard BA, Karun A (2017) Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis. Biotechnology 5(6):999–1006. https://doi.org/10.1007/s13205-015-0304-7

    Article  Google Scholar 

  • Ramadasan A (1964) Physiology of Wilt disease in coconut palms. In: Proceedings of 2nd Sessn. FAO Working Party. Coconut Production Protection and Processing. Colombo, pp 257–272

    Google Scholar 

  • Ramadasan A, Mathew C (1977) Relationship of the carbohydrate reserve in the trunk with commencement of flowering in young West Coast Tall coconut palms. J Crop 5:125–126

    CAS  Google Scholar 

  • Ramadasan A, Mathew J (1987) Leaf area and dry matter production in adult coconut E.J., palms. J Plantn Crops 15(1):59–63

    Google Scholar 

  • Ramadasan A, Satheesan KV (1980) Certain leaf anatomical characteristics of two coconut cultivars and hybrids. J Plantn Crops 8:55–57

    Google Scholar 

  • Ramadasan A, Satheesan KV, Balakrishnan R (1980) Leaf area and shoot dry weight in coconut seedling selection. Indian J Agric Sci 50:553–554

    Google Scholar 

  • Ramadasan A, Kasturi Bai KV, Shivashankar S, Vijaya Kumar K (1985) Heritability of seedling vigour in coconut palms. J Plantn Crops 13:136–138

    Google Scholar 

  • Rao CVN, Choudhury D, Bagchi P (1961) A water soluble galactomannan from coconut (Cocos nucifera). Pan I Methylation studies. Canadain J Chem 39:375–381

    Article  CAS  Google Scholar 

  • Repellin A, Daniel C, Zuily-Fodil Y (1994) Merits of physiological tests for characterizing the performance of different coconut varieties subjected to drought. Oleagineux 49:155–168

    Google Scholar 

  • Repellin A, Pham Thi AT, Tashakorie A, Sahsah Y, Daniel C, Zuily-Fodil Y (1997) Leaf membrane lipids and drought tolerance in young coconut palms (Cocos nucifera L.). Eur J Agron 6:25–33

    Article  CAS  Google Scholar 

  • Saitagaroon S, Kawakishi S, Naniki M (1983) Characterization of polysaccharides of copra meal. J Sci Food Agric 34:855–860

    Article  Google Scholar 

  • Satheesan KV, Narasimhayya G, Ramadasan A (1983) A rapid method for estimation of leaf area of one year old seedlings of tall variety of coconut palms. J Plantn Crops 11:47–49

    Google Scholar 

  • Selvaratnam EM (1952) Embryo of the coconut. Nature 69:714–715

    Article  Google Scholar 

  • Shareefa M, Thomas RJ (2016) Planting material production strategies for the root (wilt) disease prevalent tract. In: Chowdappa P, Samsudeen K, Thamban C, Rajesh MK (eds) Planting material production in coconut. Today and Tomorrow Printers and Publishers, New Delhi, p 130

    Google Scholar 

  • Shivashankar S (1990) Studies on soluble enzyme systems of coconut (Cocos nucifera, L.) cultivars. Ph.D. thesis, Biochemistry, Mysore University, Mysore, India

    Google Scholar 

  • Shivashankar S (1992) Thermal stability of nitrate reductase in relation to drought tolerance in coconut. J Plantn Crops 20(Suppl):267–273

    Google Scholar 

  • Shivashankar S, Rajagopal K, Ramadasan A (1985) Chlorophylls and nitrate reductase activity in relation to heterosis in coconut seedlings. Ann Bot 55:755–758

    Article  CAS  Google Scholar 

  • Shivashankar S, Kasturi Bai KV, Vijayakumar K (1986) A non-destructive method for the estimation of leaf area and shoot dry mass in the seedlings of coconut (Cocos nucifera, L) hybrids. Philippine J Cocon Stud 11(2):9–12

    Google Scholar 

  • Shivashankar S, Kasturi Bai KV, Rajagopal V (1991) Leaf water potential, stomatal resistance and activity of enzymes during the development of moisture stress in coconut palm. Trop Agric 68:106–110

    CAS  Google Scholar 

  • Sierra ZN, Balleza CF (1972) Proximate analysis of the coconut endosperm at progressive stages of development. National Institute of Science and Technology Annual Report 1971–1972, p 3

    Google Scholar 

  • Siju Thomas T, Rajagopal V, Naresh Kumar S, Arunachalam V, Vinu K Cherian (2005) Stability analysis for dry matter production and yield components of coconut in two agro-climatic regions of India. Indian J Plant Physiol 10(1) (NS):1-8

    Google Scholar 

  • Siju Thomas T, Naresh Kumar S, Cherian VK, Rajagopal V (2006) Role of certain biochemical compounds in adaptation of coconut to different weather conditions-a study at two agro-climatic regions of India. Indian J Hortic 63(1):1–7

    Google Scholar 

  • Siju Thomas T, Naresh Kumar S, Cherian VK, Rajagopal V (2008) Gas exchange parameters and canopy area in relation to coconut productivity in two-agro climatic regions of India. Trop Agric 85:24–35

    Google Scholar 

  • Sujatha A, Naresh Kumar S, Chalapathi Rao NBV (2006) Studies on impact of mite infestation on nut characters and oil content in coconut variety East Coast Tall (ECT). J Plantn Crops 34(1):32–35

    Google Scholar 

  • Sumathykutty Amma B (1964) Preliminary studies on the effects of micro nutrients on the germination of coconut seednuts. Curr Sci 33:49–50

    Google Scholar 

  • Sumathykutty Amma B, Patil KD (1982) An attempt to generate roots in root (wilt) diseased coconut palms with hormones, Phenols and amino acids. In: Proceedings of International Workshop on special problems in physiological investigations of Tree crops. RRII, Kottayam, pp 55–58

    Google Scholar 

  • Sunoj VJ, Kumar SN, Muralikrishna KS (2014) Effect of elevated CO2 and temperature on oxidative stress and antioxidant enzymes activity in coconut (Cocos nucifera L.) seedlings. Indian J Plant Physiol 19(4):382–387

    Article  Google Scholar 

  • Thomas KM (1974) Influence of certain physical and chemical treatments on the germination and subsequent growth of coconut (Cocos nucifera L) seedlings, preliminary study. East African Agric J 40:152–156

    Article  CAS  Google Scholar 

  • Van die J (1974) The developing fruits of Cocos nucifera and Phoenix dactylifera as physiological sinks importing and assimilating the mobile aqueous phase of the sieve tube system. Acta Bot Neerl 23(4):521–540

    Article  Google Scholar 

  • Van Staden J, Drewes SE (1975) Identification of zeatin riboside in coconut milk. Physiol Plant 34:106–109

    Article  Google Scholar 

  • Varkey T, Michael KJ, Ramadasan A (1969) Note on the investigation on the nitrogen and phosphorus metabolism of coconut palm affected by root (wilt) disease. Indian J Agric Sci 39:25–26

    Google Scholar 

  • Voleti SR, Rajagopal V (1991) Extraction and identification of epicuticular wax in coconut. Plant Physiol Biochem l8(2):88–90

    Google Scholar 

  • Voleti SR, Kasturi Bai KV, Nambiar CKB, Rajagopal V (1993a) Influence of soil type on the development of moisture stress in coconut. Oleagineux 46:505–509

    Google Scholar 

  • Voleti SR, Kasturi Bai KV, Rajagopal V (1993b) Water potential in the leaves of coconut (Cocos nucifera L.) under rain fed and irrigated conditions. In: Nair MK, Khan HH, Gopalasundaran P, Rao EVVB (eds) Advances in coconut research and development. Oxford & IBH Publishing, New Delhi, pp 243–245

    Google Scholar 

  • White AR, Elmore HW, Watson MB, Gill JP (1989) Purification and partial characterization of polysaccharides from coconut milk. Ann Bot 64:205–209

    Article  CAS  Google Scholar 

  • Wikremasurya CA (1968) Some observations on the effect of photo period on the flowering behaviour of the coconut palm, Cocos nucifera, L. Ceylon Cocon Qtly 19:152–160

    Google Scholar 

  • Wuidart W (1981) Production of coconut planting material. The polybag nursery. Oleagineux 36(7):367–376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Naresh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naresh Kumar, S., Hebbar, K.B., Kasturi Bai, K.V., Rajagopal, V. (2018). Physiology and Biochemistry. In: Krishnakumar, V., Thampan, P., Nair, M. (eds) The Coconut Palm (Cocos nucifera L.) - Research and Development Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-13-2754-4_9

Download citation

Publish with us

Policies and ethics