Skip to main content

An Analytical Model of Concentric Layer Structure for Canned Machines, Part II: Magnetic Field

  • Chapter
  • First Online:
Book cover Analysis and Mathematical Models of Canned Electrical Machine Drives
  • 439 Accesses

Abstract

The can loss is the main constraint to high efficient and high power density operation of canned machines and most analyses are FE based or with resort to empirical equations. Detailed study of the can effect is necessary, which leads to detailed electromagnetic analysis. Electromagnetic field analysis plays the central role in predicting output characteristics. Besides the numerical methods [1, 2], analyses fall into semi-analytical [3, 4] or analytical methods. As to the analytical, a couple of alternatives are predominantly developed. One is the Maxwell’s theorem [5–11]. Specifically in [5, 6], the machine is divided into sub-domains (iron cores, airgap, slots and magnets). Our previous work has been applied on an induction, permanent magnet or switched reluctance machine [8, 12, 13]. Magnetic vector potential of each domain is calculated based on magneto-motive force (MMF) distribution as prerequisite. For simplicity a smooth airgap of constant radial length is assumed. By applying Carter’s factor [14] or airgap permeance function [8], the airgap is radially enlarged to account for slotting effect. Another alternative focuses on airgap flux density by studying respectively airgap permeance function and MMF distribution [9]. However when cans are concerned, both of these methods may cause numerical deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Vaseghi, F.M. Tabar, Modeling of non-salient PM synchronous machines under stator winding inter-turn fault condition: dynamic model – FEM model, Conference of Vehicle Power & Propulsion, Arlington, TX, in USA, (2007)

    Google Scholar 

  2. A.M. El-Serafi, X. Liang, S.O. Faried, Factors affecting accuracy of determining the saturated synchronous machines cross-magnetizing parameters by the finite element method, International Conference on Electrical Machines, ICEM 2008, Vilamoura, Portugal

    Google Scholar 

  3. N. Sadowski, M.L. Mazenc, Evaluation and analysis of iron losses in electrical machines using the rain-flow method. IEEE Trans. Magn. 36(4), 1923–1926 (2000)

    Article  Google Scholar 

  4. Q. Yu, B. Bilgin, A. Emadi, Loss and efficiency analysis of a switched reluctance machine for traction application with a new calculation method. IEEE Trans. Ind. Electron. 5(62), 3072–3080 (2015)

    Article  Google Scholar 

  5. G. Dajaku, D. Gerling, Stator slotting effect on magnetic field distribution of salient pole synchronous permanent machines. IEEE Trans. Magn. 46(9), 3676–3683 (2013)

    Article  Google Scholar 

  6. T. Lubin, S. Mezani, A. Rezzoug, Exact analytical method for magnetic field computation in the air gap of cylindrical electrical machines considering slotting effects. IEEE Trans. Magn. 46(4), 1092–1099 (2010)

    Article  Google Scholar 

  7. F. Dubas, C. Espanet, Analytical solution of the magnetic field in permanent-magnet motor taking into account slotting effect. IEEE Trans. Magn. 45(5), 2097–2109 (2009)

    Article  Google Scholar 

  8. Q. Yu, D. Gerling, Analytical modeling of a canned switched reluctance machine with multilayer structure. IEEE Trans. Magn. 49(9), 5069–5082 (2013)

    Article  Google Scholar 

  9. Z.Q. Zhu, D. Howe, Instantaneous magnetic field distribution in pm brushless dc motors – Part III: effect of stator slotting. IEEE Trans. Magn. 29(1), 143–151 (1993)

    Article  Google Scholar 

  10. M. Ojaghi, S. Nasiri, Modeling of Eccentric squirrel cage induction motors with slotting effect and saturable teeth reluctances. IEEE Trans. Energy Convers. 29(3), 619–627 (2014)

    Article  Google Scholar 

  11. D. Zarko, D. Ban, T.A. Lipo, Analytical calculation of magnetic field distribution in slotted air gap of a surface permanent-magnet motor using complex relative airgap permeance. IEEE Trans. Magn. 42(7), 1828–1837 (2006)

    Article  Google Scholar 

  12. Q. Yu, X.S. Wang, Y.H. Cheng, Electromagnetic modeling and analysis of can effect of a canned induction electrical machine. IEEE Trans. Energy Convers. 31(4), 1471–1428 (2016)

    Article  Google Scholar 

  13. Q. Yu, X.S. Wang, Y.H. Cheng, Electromagnetic calculation and characteristic analysis of can effect of a canned permanent magnet motor. IEEE Trans. Magn. 52(2), 1 (2016)

    Article  Google Scholar 

  14. O. Laldin, S.D. Sudhoff, S. Pekanrek, Modified Carter’s coefficient. IEEE Trans. Energy Convers. 30(3), 1133–1134 (2015)

    Article  Google Scholar 

  15. D. Gerling, G. Dajaku, Three-dimensional analytical calculation of induction machines with multilayer rotor structure in cylindrical coordinates. Electr. Eng. 86(4), 199–211 (2004). Archiv fuer Elektrotechnik, Springer

    Article  Google Scholar 

  16. G. Dajaku, D. Gerling, Airgap flux density characteristics of salient pole synchronous permanent magnet machines. IEEE Trans. Magn. 48(7), 2196–2204 (2012)

    Article  Google Scholar 

  17. D. Gerling, Three dimensional analytical calculation of the permanent magnet motor in cylindrical coordinates, Technical report, Professur fuer Antrienbstechnik und Automation, University of Bumdeswehr Muenchen, Munich, Germany, 2003

    Google Scholar 

  18. G. Bertotti, General properties of power losses in soft ferromagnetic material. IEEE Trans. Magn. 24, 621–630 (1988)

    Article  Google Scholar 

  19. H. Mosebach, Eisenverluste von NK Super E-Core Materialen unterschiedlicher dicke und vergleich mit Klassischen Blechqualitaeten, 1999, Availabe at: http://www.iem.ing.tu-bs.de/paper/1999/moseb_99.htm

  20. F. Deng, An improved iron loss estimation for permanent magnet brushless machines. IEEE Trans. Energy Convers. 14(4), 1391–1395 (1999)

    Article  Google Scholar 

  21. Y. Chin, J. Soulrad, Modelling of iron losses in permanent magnet synchronous motors with field-weakening capability for electric vehicles, International Battery, Hybrid and Fuelcell Electric Vehicle Symposium & Exhibition, EVS 19., Korea, 2002

    Google Scholar 

  22. J. Wang, K. Atallah, Z.Q. Zhu, D. Howe, Modular three phase permanent magnet brushless machines for in-wheel applications. IEEE Trans. Veh. Technol. 57(5), 2714–2720 (2008)

    Article  Google Scholar 

  23. J. Li, D.W. Choi, D.H. Son, Y.H. Cho, Effects of MMF harmonics on rotor eddy current losses for inner rotor fractional slot axial flux permanent magnet synchronous machines. IEEE Trans. Magn. 48(2), 839–842 (2012)

    Article  Google Scholar 

  24. G. Dajaku, W. Xie, D. Gerling, Reduction of low space harmonics for the fractional slot concentrated windings using a novel stator design. IEEE Trans. Magn. 50(5), 99–110 (2006)

    Google Scholar 

  25. D. Ishak, Z.Q. Zhu, D. Howe, Comparison of PM brushless motors, having either all teeth or alternate teeth wound. IEEE Trans. Energy Convers. 21(1), 95–103 (2006)

    Article  Google Scholar 

  26. G. Dajaku, D. Gerling, Eddy current loss minimization in rotor magnets of PM machines using high efficiency 12-teeth 10-slots winding topology, International Conference on Electrical Machines and Systems (ICEMS, China, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, Q., Wang, X., Cheng, Y., Tian, L. (2019). An Analytical Model of Concentric Layer Structure for Canned Machines, Part II: Magnetic Field. In: Analysis and Mathematical Models of Canned Electrical Machine Drives. Springer, Singapore. https://doi.org/10.1007/978-981-13-2745-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2745-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2744-5

  • Online ISBN: 978-981-13-2745-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics