Skip to main content

The Water Footprint in Bioenergy—A Comparison of Four Biomass Sources to Produce Biofuels in Argentina

  • Chapter
  • First Online:
Environmental Water Footprints

Abstract

In Argentina, the use of biomass for the production of biofuels capable of replacing fossil fuels has aroused great expectation. In the last decade, the production of biodiesel has tripled, and the rising trend continues supported by national legislation that soon will increase the blend mandates up to B20 and E25 (being now B10 and E12). However, there could be some environmental concerns associated with land use and especially with water use. In this chapter, we calculate the volume of water used and consumed in the production of rapeseed (Brassica napus) and soybean (Glycine max) for biodiesel, and the production of sugarcane (Saccharum officinarum) and cordgrass (Spartina argentinensis) for bioethanol in different regions of the country. The water footprint, as defined by the Water Footprint Network, is used as an indicator of water resources appropriation, and the ISO approach is followed to assess the impacts associated with the use of water. The volume of water associated with the production of cordgrass is lower than figures obtained by traditional sources of biomass in Argentina (soybean and sugarcane). Soybean is produced in the Pampean Region and it is recommended to optimize the management of water resources in that region to minimize competition with food products while on the opposite, there is the case of Spartina that is a native grass growing naturally in the Chaco Region and it uses water that does not compete with food or livestock feed. On the other hand, rapeseed has a high water footprint mainly as a consequence of the site where it is produced. For instance, considering the environmental fragility, it is recommended to avoid the production of biomass destined to bioenergy in the arid zones of the country. Therefore, our findings show that results are more dependent on the region where each biomass is grown, than on management practices or the amount and type of chemical inputs (fertilizers, pesticides). Further work, such as the accounting of water along the industrial phase of the biofuels, is needed to have the full picture of the water consumption issue in bioenergy production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to the Hoekstra et al., blue water.

References

  • AAPRESID. (2017). Evolución de la superficie en siembra directa en Argentina. http://www.aapresid.org.ar/wp-content/uploads/2013/02/aapresid.evolucionsuperficie_sd_argentina.pdf. Accessed March 22, 2018.

  • Acreche, M. M., & Valeiro, A. H. (2013). Greenhouse gasses emissions and energy balances of a non-vertically integrated sugar and ethanol supply chain: a case study in Argentina. Energy, 54, 146–154.

    Article  CAS  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper No. 56. Rome, Italy: FAO.

    Google Scholar 

  • Amores, M. J., Mele, F. D., Jiménez, L., & Castells, F. (2013). Life cycle assessment of fuel ethanol from sugarcane in Argentina. International Journal of Life Cycle Assessment, 18(7), 1344–1357.

    Article  CAS  Google Scholar 

  • Argentine Sugar Center. (2018). Available at www.centroazucarero.com.ar. Accessed May 1, 2018.

  • Boulay, A. M., Bare, J., Benini, L., Berger, M., Lathuillière, M. J., Manzardo, A., et al. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). International Journal of Life Cycle Assessment, 23(2), 368–378. https://doi.org/10.1007/s11367-017-1333-8.

    Article  Google Scholar 

  • Carré, Patrick, & Pouzet, André. (2014). Rapeseed market, worldwide and in Europe. OCL, 21(1), D102. https://doi.org/10.1051/ocl/2013054.

    Article  Google Scholar 

  • Carneiro, M. L. N., Pradelle, F., Braga, S. L., Gomes, M. S. P., Martins, A. R. F., Turkovics, F., et al. (2017). Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renewable and Sustainable Energy Reviews, 73, 632–653.

    Article  CAS  Google Scholar 

  • Chiu, Y.-W., Suh, S., Pfister, S., Hellweg, S., & Koehler, A. (2012). Measuring ecological impact of water consumption by bioethanol using life cycle impact assessment. The International Journal of Life Cycle Assessment, 17(1), 16–24. https://doi.org/10.1007/s11367-011-0328-0.

    Article  CAS  Google Scholar 

  • Civit, B., Arena, A. P., Piastrellini, R., Curadelli, S., & Silva Colomer, J. (2011). Comparación entre la Huella Hídrica de biodiesel obtenido a partir de aceite de colza y aceite de soja. Revista de la Asociación Argentina de Energías Renovables, 15. Printed in Argentina. ISSN 0329-5184.

    Google Scholar 

  • Cremonez, P. A., Feroldi, M., Feiden, A., Teleken, J. G., Gris, D. J., Dieter, J., et al. (2015). Current scenario and prospects of use of liquid biofuels in South America. Renewable and Sustainable Energy Reviews, 43, 352–362. https://doi.org/10.1016/j.rser.2014.11.064.

    Article  Google Scholar 

  • Daylan, B. (2016). Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel. Renewable Energy, 42, 1349–1361. https://www.sciencedirect.com/science/article/pii/S0960148115304754.

  • De Fraiture, C., Giordano, M., & Liao, Y. (2008). Biofuels and implications for agricultural water use: Blue impacts of green energy. Water Policy, 10(1), 67–81. https://doi.org/10.2166/wp.2008.054.

    Article  Google Scholar 

  • Dominguez-Faus, R., Powers, S., & Burken, J. (2009). The water footprint of biofuels: A drink or drive issue? Environmental Science and Technology, 43, 3005–3010.

    Article  CAS  Google Scholar 

  • Donato, L., Huerga, I., & Hilbert, A. 2008. Balance Energético de la Producción de Biodiesel a Partir de Aceite de Soja en la República Argentina, INTA Report No. IIR-BC-INF-08-08. Buenos Aires, Argentina.

    Google Scholar 

  • European Comission 2017. Oilseeds and protein crops: Market situation. In Committee for the common organisation of agricultural markets. October 25, 2017.

    Google Scholar 

  • Faist Emmenegger, M., Pfister, S., Koehler, A., de Giovanetti, L., Arena, A. P., & Zah, R. (2011). Taking into account water use impacts in the LCA of biofuels: An Argentinean case study. The International Journal of Life Cycle Assessment, 16(9), 869–877.

    Article  Google Scholar 

  • Feldman, S. R., Bisaro, V., & Lewis, J. P. (2004). Photosynthetic and growth responses to fire of the subtropical-temperate grass Spartina argentinensis Parodi. Flora, 199(6), 491–499.

    Article  Google Scholar 

  • Feldman, S. R., & Lewis, J. P. (2005). Effect of fire on the structure and diversity of a Spartina argentinensis tall grassland. Applied Vegetation Science, 8, 77–84.

    Google Scholar 

  • Feldman, S. R., & Lewis, J. P. (2007). Effect of fire on Spartina argentinensis Parodi demographic characteristics. Wetlands, 27(4), 785–793.

    Article  Google Scholar 

  • Fernández, J. (2003). Energía de la biomasa. In J. M. de Juana (Ed.), Energías renovables para el desarrollo. Spain: Thompson-Paraninfo.

    Google Scholar 

  • Gerbens-Leenes, P., & Hoekstra, A. (2009). The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecological Economics. Retrieved from https://www.sciencedirect.com/science/article/pii/S092180090800339X.

  • Giancola, S. I., Morandi, J. L., Gatti, N., Di Giano, S., Dowbley, V., & Biaggi, C. (2012). Causas que afectan la adopción de tecnología en pequeños y medianos productores de caña de azúcar de la Provincia de Tucumán. Enfoque cualitativo. Buenos Aires: Ediciones INTA.

    Google Scholar 

  • Global Yield Gap Data. (2018) http://www.yieldgap.org/brazil. Retrieved April 23, 2018.

  • Gnansounou, E., & Raman, J. (2016). Life cycle assessment of algae biodiesel and its co-products. Applied Energy, 161, 300–308.

    Article  CAS  Google Scholar 

  • Harris, T. M., Hottle, T. A., Soratana, K., Klane, J., & Landis, A. (2016). Life cycle assessment of sunflower cultivation on abandoned mine land for biodiesel production. Journal of Cleaner Production, 112(1), 182–195. Retrieved from https://www.sciencedirect.com/science/article/pii/S0959652615012846.

    Article  Google Scholar 

  • Hoekstra, A., & Chapagain, A. (2006). Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management. https://doi.org/10.1007/s11269-006-9039-x.

    Article  Google Scholar 

  • Iriarte, L. (2008). Cultivo de Colza. Editores: Ing. Agr. Liliana Iriarte/Ing. Agr. Omar Valetti. 1ª ed. Buenos Aires: Tres Arroyos. INTA publicaciones Nacionales, Chacra Experimental Integrada Barrow.

    Google Scholar 

  • Iriarte, L., & López, Z. (2014). El cultivo de colza en Argentina. Situación actual y perspectivas. Chacra Experimental Integrada Barrow (Convenio MAA-INTA). 11 p. [en línea] http://inta.gob.ar/documentos/el-cultivo-de-colza-en-argentina-situación-actual-y-perspectivas.

  • ISO 14046. (2014). Environmental management—Water footprint—Principles, requirements and guidelines.

    Google Scholar 

  • Jorrat, M. M., Araujo, P. Z., & Mele, F. D. (2018). Sugarcane water footprint in the province of Tucumán, Argentina. Comparison between different management practices. Journal of Cleaner Production, 188, 521–529.

    Article  Google Scholar 

  • Jozami, E., Sosa, L. L., & Feldman, S. R. (2013). Spartina argentinensis as feedstock for bioetanol. Applied Technologies and Innovations, 9(2), 37–44.

    Article  Google Scholar 

  • Lamers, P., McCormick, K., & Hilbert, J. (2008). The emerging liquid biofuel market in Argentina: Implications for domestic demand and international trade. Energy Policy, 36, 1479–1490.

    Article  Google Scholar 

  • Lewis, J. P., Pire, E. F., Prado, D. E., Stofella, S. L., Franceschi, E. A., & Carnevale, N. J. (1990). Plant communities and phytogeographical position of a large depression in the Great Chaco, Argentina. Vegetatio, 86, 25–38.

    Article  Google Scholar 

  • Martelloto, E. (2012). Potencialidad y limitantes del riego complementario. Segundo Seminario, Recursos Hídricos para el sector Rural, Argentina. September 11, 2012.

    Google Scholar 

  • Martínez, A., Chargoy, J., Puerto, M., Suppen, N., Rojas, D., Alfaro, S. et al. (2016). Huella de Agua (ISO 14046) en América Latina, análisis y recomendaciones para una coherencia regional. Centro de Análisis de Ciclo de Vida y Diseño Sustentable CADIS, Embajada de Suiza en Colombia, Agencia Suiza para la Cooperación y el Desarrollo COSUDE. 90.

    Google Scholar 

  • Ministerio de Energía y Minería-Presidencia de la Nación Argentina. (2017). Producción, ventas al mercado interno y exportaciones de biocombustibles. https://datos.minem.gob.ar/dataset/estadisticas-de-biodiesel-y-bioetanol. Accessed February 25, 2018.

  • Morales, M., Quintero, J., Conejeros, R., & Aroca, G. (2015). Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance. Renewable and Sustainable Energy Reviews, 42, 1349–1361.

    Article  CAS  Google Scholar 

  • Nemecek, T., Heil, A., Huguenin, O., Meier, S., Erzinger, S., Blaser, S., et al. (2007). Life cycle inventories of agricultural production systems. Ecoinvent report No. 15, v2.0. Agroscope FAL Reckenholz and FAT Taenikon, Swiss Centre for Life Cycle Inventories, Dübendorf.

    Google Scholar 

  • Nilsalab, P., Gheewala, S. H., Mungkung, R., Perret, S. R., Silalertruksa, T., & Bonnet, S. (2017). Water demand and stress from oil palm-based biodiesel production in Thailand. The International Journal of Life Cycle Assessment, 22(11), 1666–1677. https://doi.org/10.1007/s11367-016-1213-7.

    Article  CAS  Google Scholar 

  • Nishihara Hun, A. L., Mele, F. D., & Pérez, G. A. (2017). A comparative life cycle assessment of the sugarcane value chain in the province of Tucumán (Argentina) considering different technology levels. International Journal of Life Cycle Assessment, 22(4), 502–515. https://doi.org/10.1007/s11367-016-1047-3.

    Article  CAS  Google Scholar 

  • Oliver, R. J., Finch, N. W., & Taylor, G. (2009). Second generation bioenergy crops and climate change: a review of the effects of elevated atmospheric CO2 and drought on water use and implications for yield. GCB Bioenergy, 1, 97–114.

    Article  CAS  Google Scholar 

  • Oyarzabal, M., Clavijo, J., Oakley, L. J., Biganzoli, F., Tognetti, P., Barberis, I. M., et al. (2018). Unidades de Vegetación de Argentina. Ecología Austral, 28, 40–63.

    Article  Google Scholar 

  • Pfister, S., Curran, M., Koehler, A., & Hellweg Pfister, S. (2010). Trade-offs between land and water use: regionalized impacts of energy crops. https://www.ethz.ch/content/dam/ethz/special-interest/baug/ifu/eco-systems-design-dam/documents/downloads/ei99/ifu-esd-EI99-LCAfood2010_pfister.pdf.

  • Pfister, S., Koehler, A., & Hellweg, S. (2009). Assessing the environmental impacts of freshwater consumption in LCA. Environmental Science and Technology, 43(11), 4098–4104. https://doi.org/10.1021/es802423e.

    Article  CAS  Google Scholar 

  • Piastrellini, R. (2015). Aportes a la determinación de la huella ambiental de biocombustibles en Argentina. Influencia de los sistemas de manejo de cultivos sobre el impacto del consumo de agua, del uso del suelo y de las emisiones de gases de efecto invernadero para el biodiesel de soja. PhD Thesis. Universidad Tecnológica Nacional, Mendoza, Argentina.

    Google Scholar 

  • Piastrellini, R., Arena, A. P., & Civit, B. (2017). Energy life-cycle analysis of soybean biodiesel: Effects of tillage and water management. Energy, 126, 13–20.

    Article  Google Scholar 

  • Piastrellini, R., Civit, B., & Arena, A. P. (2015). Influence of Agricultural practices on biotic production potential and climate regulation potential. A case study for life cycle assessment of soybean (Glycine max) in Argentina. Sustainability, 7, 4386–4410. https://doi.org/10.3390/su7044386.

    Article  Google Scholar 

  • REN 21. (2017). Renewables 2017. Global Status Report. http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf. Accessed February 25, 2018.

  • RFA, Renewable Fuels Association (2017). Industry statistics. Available at www.ethanolrfa.org/resources/industry/statistics/#145409899-6479-8715d404-e546. Retrieved April 23, 2017.

  • Romero, E. R., Digonzelli, P. A., & Scandaliaris, J. (2009). Manual del Cañero. San Miguel de Tucumán: Estación Experimental Agroindustrial Obispo Colombres.

    Google Scholar 

  • Salinas, A., Martellotto, E., Giubergia, J. P., Álvarez, C., & Lovera, E. (2008). Soja: Evaluación de Cultivares con Riego Suplementario. http://www.elsitioagricola.com/articulos/salinas. Accessed March 12, 2018.

  • Sánchez Godoy, F. (2012). Potencial del cultivo de la chumbera (Opuntia ficus-indica (L) Miller) para la obtención de biocombustibles. PhD Thesis. ETSI Agrónomos, UPM. Madrid, España.

    Google Scholar 

  • Silva Colomer, J. (2009). INFORME ANUAL. Proyecto Integrado “Apoyo al desarrollo sustentable de las empresas familiares y Pymes agropecuarias del Noreste de la provincia de Mendoza, basado en la diversificación productiva y el asociativismo” EEA Junin. Instituto Nacional de Tecnología Agraria (INTA).

    Google Scholar 

  • Silva Colomer, J., Castillo, J., Iriarte, L., & Villegas, N. (2010). Cultivo de colza bajo riego en Mendoza. INTA. https://inta.gob.ar/sites/…/script-tmp-cultivo_de_colza_bajo_riego_en_mendoza.pdf.

  • Souza, S. P., Seabra, J. E., & Nogueira, L. A. H. (2017). Feedstocks for biodiesel production: Brazilian and global perspectives. Biofuels, 1–24.

    Google Scholar 

  • Spang, E. S., Moomaw, W. R., Gallagher, K. S., Kirshen, P. H., & Marks, D. H. (2014). The water consumption of energy production: an international comparison. Environmental Research Letters, 9(10), 1–14.

    Google Scholar 

  • Thiyam-Holländer, U., Eskin, M., & Matthäus, B. (2013). Canola and rapeseed: Production, processing, food quality, and nutrition (p. 4). Boca Raton, FL: CRC Press. ISBN 9781466513884. Retrieved November 25, 2015.

    Chapter  Google Scholar 

  • Timilsina, G., Chisari, O., & Romero, C. (2013). Economy-wide impacts of biofuels in Argentina. Energy Policy, 55, 636–647. https://doi.org/10.1016/j.enpol.2012.12.060.

    Article  Google Scholar 

  • USDA. (2017a). GAIN report: Argentina biofuels annual. United States Department of Agriculture, Foreign Agricultural Service. July 2017.

    Google Scholar 

  • USDA. (2017b). GAIN report: Argentina sugar annual. United States Department of Agriculture, Foreign Agricultural Service. April 2017.

    Google Scholar 

  • USDA. (2018a). Sugar: World markets and trade. United States Department of Agriculture, Foreign Agricultural Service, May 2018.

    Google Scholar 

  • USDA. (2018b). Soybeans. data & analysis. Available in https://www.fas.usda.gov/commodities/soybeans. Accesed June 15, 2018.

  • USDA. (2018c). Department of agriculture. Economic Research Service. Available in https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/canola.aspx. Accessed June 5, 2018.

  • Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): Overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218–1230. Retrieved from http://link.springer.com/10.1007/s11367-016-1087-8.

    Article  Google Scholar 

  • Wu, M., Zhang, Z., & Chiu, Y. (2014). Life-cycle water quantity and water quality implications of biofuels. Current Sustainable/Renewable Energy Reports, 1(1), 3–10. https://doi.org/10.1007/s40518-013-0001-2.

    Article  Google Scholar 

  • Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 102(1), 159–165. https://doi.org/10.1016/j.biortech.2010.07.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was addressed by three research groups belonging to National Universities and the National Council of Scientific and Technical Research, in different regions of the country. Therefore, each one addressed a case of biomass source according to the conditions and aptitudes of the region considered.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Civit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araujo, P. et al. (2019). The Water Footprint in Bioenergy—A Comparison of Four Biomass Sources to Produce Biofuels in Argentina. In: Muthu, S. (eds) Environmental Water Footprints. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-13-2739-1_1

Download citation

Publish with us

Policies and ethics