Skip to main content

Medical Therapy for Glaucoma-IOP Lowering Agents

  • Chapter
  • First Online:
Medical Treatment of Glaucoma

Abstract

Pharmacologic agents that lower intraocular pressure (IOP) are the first line of treatment for the majority of glaucoma patients. Classically these medications can be split into two groups: those that suppress aqueous production, and those that enhance aqueous outflow. Multiple formulations and combinations now exist in order to limit side effects and improve adherence. This chapter will review glaucoma medications that are currently available, those that will be available in the near future, and some “farther-down-the-road” technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Snell S. On eserine and pilocarpine in glaucoma, and eserine in ocular neuralgia. Br Med J. 1882;1(1118):811–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heij A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the early manifest Glaucoma trial. Arch Ophthalmol. 2002;120(10):1268–79.

    Article  Google Scholar 

  3. Ederer F, Gaasterland DE, Sullivan EK. The advanced glaucoma intervention study (AGIS): 1. Study design and methods and baseline characteristics of study patients. Control Clin Trials. 1994;15(4):299–325.

    Article  CAS  PubMed  Google Scholar 

  4. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–13. discussion 829–30.

    Article  PubMed  Google Scholar 

  5. Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126(4):487–97.

    Google Scholar 

  6. Phillips CI, Howitt G, Rowlands DJ. Propranolol as ocular hypotensive agent. Br J Ophthalmol. 1967;51(4):222–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coakes RL, Brubaker RF. The mechanism of timolol in lowering intraocular pressure. In the normal eye. Arch Ophthalmol. 1978;96(11):2045–8.

    Article  CAS  PubMed  Google Scholar 

  8. Zimmerman TJ. Kaufman HE. Timolol. A beta-adrenergic blocking agent for the treatment of glaucoma. Arch Ophthalmol. 1977;95(4):601–4.

    Article  CAS  PubMed  Google Scholar 

  9. Zimmerman TJ, Kaufman HE. Timolol, dose response and duration of action. Arch Ophthalmol. 1977;95(4):605–7.

    Article  CAS  PubMed  Google Scholar 

  10. Ritch R, Hargett NA, Podos SM. The effect of 1.5% timolol maleate on intraocular pressure. Acta Ophthalmol. 1978;56(1):6–10.

    Article  CAS  Google Scholar 

  11. Boger WP 3rd, Steinert RF, Thomas JV. Timolol in the therapy of “ocular hypertension”. Surv Ophthalmol. 1980;25(3):195–202.

    Article  PubMed  Google Scholar 

  12. Lin LL, Galin MA, Obstbaum SA, Katz I. Longterm timolol therapy. Surv Ophthalmol. 1979;23(6):377–80.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang WY, Po AL, Dua HS, Azuara-Blanco A. Meta-analysis of randomised controlled trials comparing latanoprost with timolol in the treatment of patients with open angle glaucoma or ocular hypertension. Br J Ophthalmol. 2001;85(8):983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Topper JE, Brubaker RF. Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthalmol Vis Sci. 1985;26(10):1315–9.

    CAS  PubMed  Google Scholar 

  15. Quaranta L, Gandolfo F, Turano R, Rovida F, Pizzolante T, Musig A, et al. Effects of topical hypotensive drugs on circadian IOP, blood pressure, and calculated diastolic ocular perfusion pressure in patients with glaucoma. Invest Ophthalmol Vis Sci. 2006;47(7):2917–23.

    Article  PubMed  Google Scholar 

  16. Steinert RF, Thomas JV, Boger WP 3rd. Long-term drift and continued efficacy after multiyear timolol therapy. Arch Ophthalmol. 1981;99(1):100–3.

    Article  CAS  PubMed  Google Scholar 

  17. Rakofsky SI, Lazar M, Almog Y, LeBlanc RP, Mann C, Orr A, et al. Efficacy and safety of once-daily levobunolol for glaucoma therapy. Can J Ophthalmol. 1989;24(1):2–6.

    CAS  PubMed  Google Scholar 

  18. McMahon CD, Shaffer RN, Hoskins HD Jr, Hetherington J Jr. Adverse effects experienced by patients taking timolol. Am J Ophthalmol. 1979;88(4):736–8.

    Article  CAS  PubMed  Google Scholar 

  19. Van Buskirk EM. Adverse reactions from timolol administration. Ophthalmology. 1980;87(5):447–50.

    Article  PubMed  Google Scholar 

  20. Bonomi L, Zavarise G, Noya E, Michieletto S. Effects of timolol maleate on tear flow in human eyes. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1980;213(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  21. Nelson WL, Fraunfelder FT, Sills JM, Arrowsmith JB, Kuritsky JN. Adverse respiratory and cardiovascular events attributed to timolol ophthalmic solution, 1978-1985. Am J Ophthalmol. 1986;102(5):606–11.

    Article  CAS  PubMed  Google Scholar 

  22. Sadiq SA, Fielding K, Vernon SA. The effect of timolol drops on respiratory function. Eye (Lond). 1998;12(Pt 3a):386–9.

    Article  Google Scholar 

  23. Shaivitz SA. Timolol and myasthenia gravis. JAMA. 1979;242(15):1611–2.

    Article  CAS  PubMed  Google Scholar 

  24. Velde TM, Kaiser FE. Ophthalmic timolol treatment causing altered hypoglycemic response in a diabetic patient. Arch Intern Med. 1983;143(8):1627.

    Article  CAS  PubMed  Google Scholar 

  25. Zimmerman TJ, Sharir M, Nardin GF, Fuqua M. Therapeutic index of pilocarpine, carbachol, and timolol with nasolacrimal occlusion. Am J Ophthalmol. 1992;114(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  26. The Levobunolol Study Group (Appended). Levobunolol. A beta-adrenoceptor antagonist effective in the long-term treatment of glaucoma. Ophthalmology. 1985;92(9):1271–6.

    Google Scholar 

  27. Wandel T, Charap AD, Lewis RA, Partamian L, Cobb S, Lue JC, et al. Glaucoma treatment with once-daily levobunolol. Am J Ophthalmol. 1986;101(3):298–304.

    Article  CAS  PubMed  Google Scholar 

  28. Muller O, Knobel HR. Effectiveness and tolerance of metipranolol--results of a multi-center long-term study in Switzerland. Klin Monbl Augenheilkd. 1986;188(1):62–3.

    Article  CAS  PubMed  Google Scholar 

  29. Bleckmann H, Duy TP, Grajewski O. Therapeutic efficacy of metipranolol eye drops 0.3% versus timolol eye drops 0.25%. In: Merté HJ, editor. Metipranolol. Vienna: Springer; 1984.

    Google Scholar 

  30. Akingbehin T, Villada JR. Metipranolol-associated granulomatous anterior uveitis. Br J Ophthalmol. 1991;75(9):519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schnarr KD. Comparative multicenter study of carteolol eyedrops with other beta blockers in 768 patients under normal conditions. Klin Monbl Augenheilkd. 1988;192(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  32. Stewart WC, Shields MB, Allen RC, Lewis RA, Cohen JS, Hoskins HD, et al. A 3-month comparison of 1% and 2% carteolol and 0.5% timolol in open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1991;229(3):258–61.

    Article  CAS  PubMed  Google Scholar 

  33. Frishman WH, Covey S. Penbutolol and carteolol: two new beta-adrenergic blockers with partial agonism. J Clin Pharmacol. 1990;30(5):412–21.

    Article  CAS  PubMed  Google Scholar 

  34. van Brummelen P. The relevance of intrinsic sympathomimetic activity for beta-blocker-induced changes in plasma lipids. J Cardiovasc Pharmacol. 1983;5(Suppl 1):S51–5.

    Article  PubMed  Google Scholar 

  35. Reiss GR, Brubaker RF. The mechanism of betaxolol, a new ocular hypotensive agent. Ophthalmology. 1983;90(11):1369–72.

    Article  CAS  PubMed  Google Scholar 

  36. Caldwell DR, Salisbury CR, Guzek JP. Effects of topical betaxolol in ocular hypertensive patients. Arch Ophthalmol. 1984;102(4):539–40.

    Article  CAS  PubMed  Google Scholar 

  37. Feghali JG, Kaufman PL. Decreased intraocular pressure in the hypertensive human eye with betaxolol, a beta 1-adrenergic antagonist. Am J Ophthalmol. 1985;100(6):777–82.

    Article  CAS  PubMed  Google Scholar 

  38. Stewart RH, Kimbrough RL, Ward RL. Betaxolol vs timolol. A six-month double-blind comparison. Arch Ophthalmol. 1986;104(1):46–8.

    Article  CAS  PubMed  Google Scholar 

  39. Dunn TL, Gerber MJ, Shen AS, Fernandez E, Iseman MD, Cherniack RM. The effect of topical ophthalmic instillation of timolol and betaxolol on lung function in asthmatic subjects. Am Rev Respir Dis. 1986;133(2):264–8.

    CAS  PubMed  Google Scholar 

  40. Schoene RB, Abuan T, Ward RL, Beasley CH. Effects of topical betaxolol, timolol, and placebo on pulmonary function in asthmatic bronchitis. Am J Ophthalmol. 1984;97(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  41. Harris LS, Greenstein SH, Bloom AF. Respiratory difficulties with betaxolol. Am J Ophthalmol. 1986;102(2):274–5.

    Article  CAS  PubMed  Google Scholar 

  42. Roholt PC. Betaxolol and restrictive airway disease. Case report. Arch Ophthalmol. 1987;105(9):1172.

    Article  CAS  PubMed  Google Scholar 

  43. Vuori ML, Ali-Melkkila T, Kaila T, Iisalo E, Saari KM. Beta 1- and beta 2-antagonist activity of topically applied betaxolol and timolol in the systemic circulation. Acta Ophthalmol. 1993;71(5):682–5.

    Article  CAS  Google Scholar 

  44. Lynch MG, Whitson JT, Brown RH, Nguyen H, Drake MM. Topical beta-blocker therapy and central nervous system side effects. A preliminary study comparing betaxolol and timolol. Arch Ophthalmol. 1988;106(7):908–11.

    Article  CAS  PubMed  Google Scholar 

  45. Wang YL, Hayashi M, Yablonski ME, Toris CB. Effects of multiple dosing of epinephrine on aqueous humor dynamics in human eyes. J Ocul Pharmacol Ther. 2002;18(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  46. Schenker HI, Yablonski ME, Podos SM. Linder L. Fluorophotometric study of epinephrine and timolol in human subjects. Arch Ophthalmol. 1981;99(7):1212–6.

    Article  CAS  PubMed  Google Scholar 

  47. Garner LL, Johnstone WW, Ballintine EJ, Carroll ME. Effect of 2% levo-rotary epinephrine on the intraocular pressure of the glaucomatous eye. AMA Arch Ophthalmol. 1959;62(2):230–8.

    Article  CAS  PubMed  Google Scholar 

  48. Becker B, Pettit TH, Gay AJ. Topical epinephrine therapy of open-angle glaucoma. Arch Ophthalmol. 1961;66:219–25.

    Article  CAS  PubMed  Google Scholar 

  49. Costagliola C, dell’Omo R, Romano MR, Rinaldi M, Zeppa L, Parmeggiani F. Pharmacotherapy of intraocular pressure: part I. Parasympathomimetic, sympathomimetic and sympatholytics. Expert Opin Pharmacother. 2009;10(16):2663–77.

    Article  CAS  PubMed  Google Scholar 

  50. Mandell AI, Stentz F, Kitabchi AE. Dipivalyl epinephrine: a new pro-drug in the treatment of glaucoma. Ophthalmology. 1978;85(3):268–75.

    Article  CAS  PubMed  Google Scholar 

  51. Krieglstein GK, Gramer E. The response of ophthalmic arterial pressure to topically applied clonidine. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1978;207(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  52. Gharagozloo NZ, Relf SJ, Brubaker RF. Aqueous flow is reduced by the alpha-adrenergic agonist, apraclonidine hydrochloride (ALO 2145). Ophthalmology. 1988;95(9):1217–20.

    Article  CAS  PubMed  Google Scholar 

  53. Abrams DA, Robin AL, Pollack IP, de Faller JM, DeSantis L. The safety and efficacy of topical 1% ALO 2145 (p-aminoclonidine hydrochloride) in normal volunteers. Arch Ophthalmol. 1987;105(9):1205–7.

    Article  CAS  PubMed  Google Scholar 

  54. Stewart WC, Ritch R, Shin DH, Lehmann RP, Shrader CE, van Buskirk EM. The efficacy of apraclonidine as an adjunct to timolol therapy. Apraclonidine adjunctive therapy study group. Arch Ophthalmol. 1995;113(3):287–92.

    Article  CAS  PubMed  Google Scholar 

  55. Stewart WC. Effect and side effects of apraclonidine. Klin Monbl Augenheilkd. 1996;209(1):A7–13.

    CAS  PubMed  Google Scholar 

  56. Butler P, Mannschreck M, Lin S, Hwang I, Alvarado J. Clinical experience with the long-term use of 1% apraclonidine. Incidence of allergic reactions. Arch Ophthalmol. 1995;113(3):293–6.

    Article  CAS  PubMed  Google Scholar 

  57. Burke J, Schwartz M. Preclinical evaluation of brimonidine. Surv Ophthalmol. 1996;41(Suppl 1):S9–18.

    Article  PubMed  Google Scholar 

  58. Toris CB, Gleason ML, Camras CB, Yablonski ME. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol. 1995;113(12):1514–7.

    Article  CAS  PubMed  Google Scholar 

  59. Walters TR. Development and use of brimonidine in treating acute and chronic elevations of intraocular pressure: a review of safety, efficacy, dose response, and dosing studies. Surv Ophthalmol. 1996;41(Suppl 1):S19–26.

    Article  PubMed  Google Scholar 

  60. Katz LJ. Brimonidine tartrate 0.2% twice daily vs timolol 0.5% twice daily: 1-year results in glaucoma patients. Brimonidine study group. Am J Ophthalmol. 1999;127(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  61. Fung AT, Reid SE, Jones MP, Healey PR, McCluskey PJ, Craig JC. Meta-analysis of randomised controlled trials comparing latanoprost with brimonidine in the treatment of open-angle glaucoma, ocular hypertension or normal-tension glaucoma. Br J Ophthalmol. 2007;91(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  62. Lee DA, Gornbein JA. Effectiveness and safety of brimonidine as adjunctive therapy for patients with elevated intraocular pressure in a large, open-label community trial. J Glaucoma. 2001;10(3):220–6.

    Article  CAS  PubMed  Google Scholar 

  63. Wen R, Cheng T, Li Y, Cao W, Steinberg RH. Alpha 2-adrenergic agonists induce basic fibroblast growth factor expression in photoreceptors in vivo and ameliorate light damage. J Neurosci. 1996;16(19):5986–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. WoldeMussie E, Ruiz G, Wijono M, Wheeler LA. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. Invest Ophthalmol Vis Sci. 2001;42(12):2849–55.

    CAS  PubMed  Google Scholar 

  65. Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure Glaucoma treatment study. Am J Ophthalmol. 2011;151(4):671–81.

    Article  CAS  PubMed  Google Scholar 

  66. RP LB. Twelve-month results of an ongoing randomized trial comparing brimonidine tartrate 0.2% and timolol 0.5% given twice daily in patients with glaucoma or ocular hypertension. Brimonidine study group 2. Ophthalmology. 1998;105(10):1960–7.

    Article  Google Scholar 

  67. Melamed S, David R. Ongoing clinical assessment of the safety profile and efficacy of brimonidine compared with timolol: year-three results. Brimonidine study group II. Clin Ther. 2000;22(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  68. Enyedi LB, Freedman SF. Safety and efficacy of brimonidine in children with glaucoma. J AAPOS. 2001;5(5):281–4.

    Article  CAS  PubMed  Google Scholar 

  69. Carlsen JO, Zabriskie NA, Kwon YH, Barbe ME, Scott WE. Apparent central nervous system depression in infants after the use of topical brimonidine. Am J Ophthalmol. 1999;128(2):255–6.

    Article  CAS  PubMed  Google Scholar 

  70. Soto-Perez-de-Celis E, Skvirsky DO, Cisneros BG. Unintentional ingestion of brimonidine antiglaucoma drops: a case report and review of the literature. Pediatr Emerg Care. 2007;23(9):657–8.

    Article  PubMed  Google Scholar 

  71. Vanhaesebrouck S, Cossey V, Cosaert K, Allegaert K, Naulaers G. Cardiorespiratory depression and hyperglycemia after unintentional ingestion of brimonidine in a neonate. Eur J Ophthalmol. 2009;19(4):694–5.

    Article  PubMed  Google Scholar 

  72. Schuman JS, Horwitz B, Choplin NT, David R, Albracht D, Chen K. A 1-year study of brimonidine twice daily in glaucoma and ocular hypertension. A controlled, randomized, multicenter clinical trial. Chronic Brimonidine study group. Arch Ophthalmol. 1997;115(7):847–52.

    Article  CAS  PubMed  Google Scholar 

  73. Rahman MQ, Montgomery DM, Lazaridou MN. Surveillance of glaucoma medical therapy in a Glasgow teaching hospital: 26 years’ experience. Br J Ophthalmol. 2009;93(12):1572–5.

    Article  CAS  PubMed  Google Scholar 

  74. Osborne SA, Montgomery DM, Morris D, McKay IC. Alphagan allergy may increase the propensity for multiple eye-drop allergy. Eye (Lond). 2005;19(2):129–37.

    Article  CAS  Google Scholar 

  75. Beltz J, Zamir E. Brimonidine induced anterior uveitis. Ocul Immunol Inflamm. 2016;24(2):128–33.

    Article  CAS  PubMed  Google Scholar 

  76. Byles DB, Frith P, Salmon JF. Anterior uveitis as a side effect of topical brimonidine. Am J Ophthalmol. 2000;130(3):287–91.

    Article  CAS  PubMed  Google Scholar 

  77. Cates CA, Jeffrey MN. Granulomatous anterior uveitis associated with 0.2% topical brimonidine. Eye (Lond). 2003;17(5):670–1.

    Article  CAS  Google Scholar 

  78. Watts P, Hawksworth N. Delayed hypersensitivity to brimonidine tartrate 0.2% associated with high intraocular pressure. Eye (Lond). 2002;16(2):132–5.

    Article  CAS  Google Scholar 

  79. Kaufman PL. Aqueous humor dynamics following total iridectomy in the cynomolgus monkey. Invest Ophthalmol Vis Sci. 1979;18(8):870–4.

    CAS  PubMed  Google Scholar 

  80. Kaufman PL, Barany EH. Loss of acute pilocarpine effect on outflow facility following surgical disinsertion and retrodisplacement of the ciliary muscle from the scleral spur in the cynomolgus monkey. Investig Ophthalmol. 1976;15(10):793–807.

    CAS  Google Scholar 

  81. Drance SM, Nash PA. The dose response of human intraocular pressure to pilocarpine. Can J Ophthalmol. 1971;6(1):9–13.

    CAS  PubMed  Google Scholar 

  82. Poinoosawmy D, Nagasubramanian S, Brown NA. Effect of pilocarpine on visual acuity and on the dimensions of the cornea and anterior chamber. Br J Ophthalmol. 1976;60(10):676–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Levene RZ. Uniocular miotic therapy. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1975;79(2):Op376–80.

    CAS  PubMed  Google Scholar 

  84. Pape LG, Forbes M. Retinal detachment and miotic therapy. Am J Ophthalmol. 1978;85(4):558–66.

    Article  CAS  PubMed  Google Scholar 

  85. Zimmerman TJ, Wheeler TM. Miotics: side effects and ways to avoid them. Ophthalmology. 1982;89(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  86. Duncan G, Collison DJ. Role of the non-neuronal cholinergic system in the eye: a review. Life Sci. 2003;72(18–19):2013–9.

    Article  CAS  PubMed  Google Scholar 

  87. Reichert RW, Shields MB, Stewart WC. Intraocular pressure response to replacing pilocarpine with carbachol. Am J Ophthalmol. 1988;106(6):747–8.

    Article  CAS  PubMed  Google Scholar 

  88. Pantuck EJ. Ecothiopate iodide eye drops and prolonged response to suxamethonium. Br J Anaesth. 1966;38(5):406–7.

    Article  CAS  PubMed  Google Scholar 

  89. Gesztes T. Prolonged apnoea after suxamethonium injection associated with eye drops containing an anticholinesterase agent. Br J Anaesth. 1966;38(5):408–9.

    Article  CAS  PubMed  Google Scholar 

  90. Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003;23(2):146–89.

    Article  CAS  PubMed  Google Scholar 

  91. Becker B. Decrease in intraocular pressure in man by a carbonic anhydrase inhibitor, diamox; a preliminary report. Am J Ophthalmol. 1954;37(1):13–5.

    Article  CAS  PubMed  Google Scholar 

  92. Grant WM, Trotter RR. Diamox (acetazolamide) in treatment of glaucoma. AMA Arch Ophthalmol. 1954;51(6):735–9.

    Article  CAS  PubMed  Google Scholar 

  93. Dahlen K, Epstein DL, Grant WM, Hutchinson BT, Prien EL Jr, Krall JMA. Repeated dose-response study of methazolamide in glaucoma. Arch Ophthalmol. 1978;96(12):2214–8.

    Article  CAS  PubMed  Google Scholar 

  94. Lichter PR. Reducing side effects of carbonic anhydrase inhibitors. Ophthalmology. 1981;88(3):266–9.

    Article  CAS  PubMed  Google Scholar 

  95. Fraunfelder FT, Meyer SM, Bagby GC Jr, Dreis MW. Hematologic reactions to carbonic anhydrase inhibitors. Am J Ophthalmol. 1985;100(1):79–81.

    Article  CAS  PubMed  Google Scholar 

  96. Murphy RM, Bakir B, O’Brien C, Wiggs JL, Pasquale LR. Drug-induced bilateral secondary angle-closure Glaucoma: a literature synthesis. J Glaucoma. 2016;25(2):e99–105.

    Article  PubMed  Google Scholar 

  97. Her Y, Kil MS, Park JH, Kim CW, Kim SS. Stevens-Johnson syndrome induced by acetazolamide. J Dermatol. 2011;38(3):272–5.

    Article  PubMed  Google Scholar 

  98. Shirato S, Kagaya F, Suzuki Y, Joukou S. Stevens-Johnson syndrome induced by methazolamide treatment. Arch Ophthalmol. 1997;115(4):550–3.

    Article  CAS  PubMed  Google Scholar 

  99. Sud RN, Grewal SS. Stevens Johnson syndrome due to Diamox. Indian J Ophthalmol. 1981;29(2):101–3.

    CAS  PubMed  Google Scholar 

  100. Hoyng PF, van Beek LM. Pharmacological therapy for glaucoma: a review. Drugs. 2000;59(3):411–34.

    Article  CAS  PubMed  Google Scholar 

  101. Sugrue MF, Mallorga P, Schwam H, Baldwin JJ, Ponticello GS. A comparison of L-671,152 and MK-927, two topically effective ocular hypotensive carbonic anhydrase inhibitors, in experimental animals. Curr Eye Res. 1990;9(6):607–15.

    Article  CAS  PubMed  Google Scholar 

  102. Pfeiffer N. Dorzolamide: development and clinical application of a topical carbonic anhydrase inhibitor. Surv Ophthalmol. 1997;42(2):137–51.

    Article  CAS  PubMed  Google Scholar 

  103. Strahlman E, Tipping R, Vogel R. A double-masked, randomized 1-year study comparing dorzolamide (Trusopt), timolol, and betaxolol. International Dorzolamide Study Group. Arch Ophthalmol. 1995;113(8):1009–16.

    Article  CAS  PubMed  Google Scholar 

  104. Cheng JW, Cheng SW, Yu DY, Wei RL, Lu GC. Meta-analysis of alpha2-adrenergic agonists versus carbonic anhydrase inhibitors as adjunctive therapy. Curr Med Res Opin. 2012;28(4):543–50.

    Article  CAS  PubMed  Google Scholar 

  105. Orzalesi N, Rossetti L, Invernizzi T, Bottoli A, Autelitano A. Effect of timolol, latanoprost, and dorzolamide on circadian IOP in glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci. 2000;41(9):2566–73.

    CAS  PubMed  Google Scholar 

  106. Costagliola C, Campa C, Parmeggiani F, Incorvaia C, Perri P, D’Angelo S, et al. Effect of 2% dorzolamide on retinal blood flow: a study on juvenile primary open-angle glaucoma patients already receiving 0.5% timolol. Br J Clin Pharmacol. 2007;63(3):376–9.

    Article  CAS  PubMed  Google Scholar 

  107. Wirtitsch MG, Findl O, Heinzl H, Drexler W. Effect of dorzolamide hydrochloride on central corneal thickness in humans with cornea guttata. Arch Ophthalmol. 2007;125(10):1345–50.

    Article  CAS  PubMed  Google Scholar 

  108. Silver LH. Clinical efficacy and safety of brinzolamide (Azopt), a new topical carbonic anhydrase inhibitor for primary open-angle glaucoma and ocular hypertension. Brinzolamide primary therapy study group. Am J Ophthalmol. 1998;126(3):400–8.

    Article  CAS  PubMed  Google Scholar 

  109. Silver LH. Ocular comfort of brinzolamide 1.0% ophthalmic suspension compared with dorzolamide 2.0% ophthalmic solution: results from two multicenter comfort studies. Brinzolamide comfort study group. Surv Ophthalmol. 2000;44(Suppl 2):S141–5.

    Article  PubMed  Google Scholar 

  110. Toris CB, Gabelt BT, Kaufman PL. Update on the mechanism of action of topical prostaglandins for intraocular pressure reduction. Surv Ophthalmol. 2008;53(Suppl1):S107–20.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Toris CB, Camras CB, Yablonski ME, Brubaker RF. Effects of exogenous prostaglandins on aqueous humor dynamics and blood-aqueous barrier function. Surv Ophthalmol. 1997;41(Suppl 2):S69–75.

    Article  PubMed  Google Scholar 

  112. Alm A, Camras CB, Watson PG. Phase III latanoprost studies in Scandinavia, the United Kingdom and the United States. Surv Ophthalmol. 1997;41(Suppl 2):S105–10.

    Article  PubMed  Google Scholar 

  113. Larsson LI, Mishima HK, Takamatsu M, Orzalesi N, Rossetti L. The effect of latanoprost on circadian intraocular pressure. Surv Ophthalmol. 2002;47(Suppl 1):S90–6.

    Article  PubMed  Google Scholar 

  114. Costagliola C, Del Prete A, Verolino M, Antinozzi P, Fusco R, Parmeggiani F, et al. Effect of 0.005% latanoprost once daily on intraocular pressure in glaucomatous patients not adequately controlled by beta-blockers twice daily: a 3-year follow-up. Experience and incidence of side effects in a prospective study on 76 patients. Graefes Arch Clin Exp Ophthalmol. 2002;240(5):379–86.

    Article  CAS  PubMed  Google Scholar 

  115. Perry CM, McGavin JK, Culy CR, Ibbotson T. Latanoprost: an update of its use in glaucoma and ocular hypertension. Drugs Aging. 2003;20(8):597–630.

    Article  CAS  PubMed  Google Scholar 

  116. Susanna R Jr, Chew P, Kitazawa Y. Current status of prostaglandin therapy: latanoprost and unoprostone. Surv Ophthalmol. 2002;47(Suppl 1):S97–104.

    Article  PubMed  Google Scholar 

  117. Goldberg I, Li XY, Selaru P, Paggiarino D. A 5-year, randomized, open-label safety study of latanoprost and usual care in patients with open-angle glaucoma or ocular hypertension. Eur J Ophthalmol. 2008;18(3):408–16.

    Article  CAS  PubMed  Google Scholar 

  118. Netland PA, Landry T, Sullivan EK, Andrew R, Silver L, Weiner A, et al. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2001;132(4):472–84.

    Article  CAS  PubMed  Google Scholar 

  119. Bean GW, Camras CB. Commercially available prostaglandin analogs for the reduction of intraocular pressure: similarities and differences. Surv Ophthalmol. 2008;53(Suppl1):S69–84.

    Article  PubMed  Google Scholar 

  120. Gandolfi S, Simmons ST, Sturm R, Chen K, Van Denburgh AM. Three-month comparison of bimatoprost and latanoprost in patients with glaucoma and ocular hypertension. Adv Ther. 2001;18(3):110–21.

    Article  CAS  PubMed  Google Scholar 

  121. Katz LJ, Cohen JS, Batoosingh AL, Felix C, Shu V, Schiffman RM. Twelve-month, randomized, controlled trial of bimatoprost 0.01%, 0.0125%, and 0.03% in patients with glaucoma or ocular hypertension. Am J Ophthalmol. 2010;149(4):661–71.e1.

    Article  CAS  PubMed  Google Scholar 

  122. Swymer C, Neville MW. Tafluprost: the first preservative-free prostaglandin to treat open-angle glaucoma and ocular hypertension. Ann Pharmacother. 2012;46(11):1506–10.

    Article  PubMed  CAS  Google Scholar 

  123. Gandolfi SA, Cimino L. Effect of bimatoprost on patients with primary open-angle glaucoma or ocular hypertension who are nonresponders to latanoprost. Ophthalmology. 2003;110(3):609–14.

    Article  PubMed  Google Scholar 

  124. Kaback M, Geanon J, Katz G, Ripkin D, Przydryga J. Ocular hypotensive efficacy of travoprost in patients unsuccessfully treated with latanoprost. Curr Med Res Opin. 2004;20(9):1341–5.

    Article  CAS  PubMed  Google Scholar 

  125. Williams RD. Efficacy of bimatoprost in glaucoma and ocular hypertension unresponsive to latanoprost. Adv Ther. 2002;19(6):275–81.

    Article  CAS  PubMed  Google Scholar 

  126. Costagliola C, dell’Omo R, Romano MR, Rinaldi M, Zeppa L, Parmeggiani F. Pharmacotherapy of intraocular pressure - part II. Carbonic anhydrase inhibitors, prostaglandin analogues and prostamides. Expert Opin Pharmacother. 2009;10(17):2859–70.

    Article  CAS  PubMed  Google Scholar 

  127. Alm A, Grierson I, Shields MB. Side effects associated with prostaglandin analog therapy. Surv Ophthalmol. 2008;53(Suppl1):S93–105.

    Article  PubMed  Google Scholar 

  128. Warwar RE, Bullock JD, Ballal D. Cystoid macular edema and anterior uveitis associated with latanoprost use. Experience and incidence in a retrospective review of 94 patients. Ophthalmology. 1998;105(2):263–8.

    Article  CAS  PubMed  Google Scholar 

  129. Lima MC, Paranhos A Jr, Salim S, Honkanen R, Devgan L, Wand M, et al. Visually significant cystoid macular edema in pseudophakic and aphakic patients with glaucoma receiving latanoprost. J Glaucoma. 2000;9(4):317–21.

    Article  CAS  PubMed  Google Scholar 

  130. Fechtner RD, Khouri AS, Zimmerman TJ, Bullock J, Feldman R, Kulkarni P, et al. Anterior uveitis associated with latanoprost. Am J Ophthalmol. 1998;126(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  131. Wand M, Gilbert CM, Liesegang TJ. Latanoprost and herpes simplex keratitis. Am J Ophthalmol. 1999;127(5):602–4.

    Article  CAS  PubMed  Google Scholar 

  132. Kroll DM, Schuman JS. Reactivation of herpes simplex virus keratitis after initiating bimatoprost treatment for glaucoma. Am J Ophthalmol. 2002;133(3):401–3.

    Article  PubMed  Google Scholar 

  133. Bean G, Reardon G, Zimmerman TJ. Association between ocular herpes simplex virus and topical ocular hypotensive therapy. J Glaucoma. 2004;13(5):361–4.

    Article  PubMed  Google Scholar 

  134. Weinreb RN, Ong T, Scassellati Sforzolini B, Vittitow JL, Singh K, Kaufman PL. A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: the VOYAGER study. Br J Ophthalmol. 2015;99(6):738–45.

    Article  PubMed  Google Scholar 

  135. Weinreb RN, Scassellati Sforzolini B, Vittitow J, Liebmann J. Latanoprostene bunod 0.024% versus timolol maleate 0.5% in subjects with open-angle glaucoma or ocular hypertension: the APOLLO study. Ophthalmology. 2016;123(5):965–73.

    Article  PubMed  Google Scholar 

  136. Kawase K, Vittitow JL, Weinreb RN, Araie M. Long-term safety and efficacy of latanoprostene bunod 0.024% in Japanese subjects with open-angle glaucoma or ocular hypertension: the JUPITER study. Adv Ther. 2016;33(9):1612–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang SK, Chang RT. An emerging treatment option for glaucoma: rho kinase inhibitors. Clin Ophthalmol. 2014;8:883–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Sugiyama T, Shibata M, Kajiura S, Okuno T, Tonari M, Oku H, et al. Effects of fasudil, a rho-associated protein kinase inhibitor, on optic nerve head blood flow in rabbits. Invest Ophthalmol Vis Sci. 2011;52(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  139. Sagawa H, Terasaki H, Nakamura M, Ichikawa M, Yata T, Tokita Y, et al. A novel ROCK inhibitor, Y-39983, promotes regeneration of crushed axons of retinal ganglion cells into the optic nerve of adult cats. Exp Neurol. 2007;205(1):230–40.

    Article  CAS  PubMed  Google Scholar 

  140. Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Araie M. Phase 2 randomized clinical study of a rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 2013;156(4):731–6.

    Article  CAS  PubMed  Google Scholar 

  141. Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Suganami H, et al. Additive intraocular pressure-lowering effects of the rho kinase inhibitor ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmol. 2015;133(7):755–61.

    Article  PubMed  Google Scholar 

  142. Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Araie M. Phase 1 clinical trials of a selective rho kinase inhibitor, K-115. JAMA Ophthalmol. 2013;131(10):1288–95.

    Article  CAS  PubMed  Google Scholar 

  143. Serle JB, Katz LJ, McLaurin E, Heah T, Ramirez-Davis N, Usner DW, et al. Two phase 3 clinical trials comparing the safety and efficacy of netarsudil to timolol in patients with elevated intraocular pressure: rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol. 2018;186:116–27.

    Article  CAS  PubMed  Google Scholar 

  144. Ormrod D, McClellan K. Topical dorzolamide 2%/timolol 0.5%: a review of its use in the treatment of open-angle glaucoma. Drugs Aging. 2000;17(6):477–96.

    Article  CAS  PubMed  Google Scholar 

  145. Craven ER, Walters TR, Williams R, Chou C, Cheetham JK, Schiffman R. Brimonidine and timolol fixed-combination therapy versus monotherapy: a 3-month randomized trial in patients with glaucoma or ocular hypertension. J Ocul Pharmacol Ther. 2005;21(4):337–48.

    Article  CAS  PubMed  Google Scholar 

  146. Sharma S, Trikha S, Perera SA, Aung T. Clinical effectiveness of brinzolamide 1%-brimonidine 0.2% fixed combination for primary open-angle glaucoma and ocular hypertension. Clin Ophthalmol. 2015;9:2201–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lewis RA, Levy B, Ramirez N, Kopczynski CC, Usner DW, Novack GD. Fixed-dose combination of AR-13324 and latanoprost: a double-masked, 28-day, randomised, controlled study in patients with open-angle glaucoma or ocular hypertension. Br J Ophthalmol. 2016;100(3):339–44.

    Article  PubMed  Google Scholar 

  148. Vignal C, Uretsky S, Fitoussi S, Galy A, Blouin L, Girmens JF, Bidot S, Thomasson N, Bouquet C, Valero S, Meunier S, Combal JP, Gilly B, Katz B, Sahel JA. Safety of rAAV2/2-ND4 gene therapy for Leber hereditary optic neuropathy. Ophthalmology. 2018;125(6):945–7. pii: S0161-6420(17)33673-4.

    Article  PubMed  Google Scholar 

  149. Kumaran N, Michaelides M, Smith AJ, Ali RR, Bainbridge JWB. Retinal gene therapy. Br Med Bull. 2018;126(1):13–25.

    Article  PubMed  Google Scholar 

  150. Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, Yuan H, Hauswirth WW, Lam BL. Gene therapy for leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology. 2017;124(11):1621–34.

    Article  PubMed  Google Scholar 

  151. Ashtari M, Nikonova ES, Marshall KA, Young GJ, Aravand P, Pan W, Ying GS, Willett AE, Mahmoudian M, Maguire AM, Bennett J. The role of the human visual cortex in assessment of the long-term durability of retinal gene therapy in follow-on RPE65 clinical trial patients. Ophthalmology. 2017;124(6):873–83.

    Article  PubMed  Google Scholar 

  152. Duong TT, Vasireddy V, Ramachandran P, Herrera PS, Leo L, Merkel C, Bennett J, Mills JA. Use of induced pluripotent stem cell models to probe the pathogenesis of Choroideremia and to develop a potential treatment. Stem Cell Res. 2018;27:140–50.

    Article  CAS  PubMed  Google Scholar 

  153. Patrício MI, MacLaren RE. Retinal gene therapy for choroideremia: in vitro testing for gene augmentation using an adeno-associated viral (aav) vector. Methods Mol Biol. 2018;1715:89–97.

    Article  PubMed  CAS  Google Scholar 

  154. MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FP, Black GC, Lotery AJ, Downes SM, Webster AR, Seabra MC. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383(9923):1129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kaufman PL. Enhancing trabecular outflow by disrupting the actin cytoskeleton, increasing uveoscleral outflow with prostaglandins, and understanding the pathophysiology of presbyopia interrogating mother nature: asking why, asking how, recognizing the signs, following the trail. Exp Eye Res. 2008;86:3–17.

    Article  CAS  PubMed  Google Scholar 

  156. Rasmussen CA, Kaufman PL. Novel therapeutic approaches for glaucoma. Drugs Fut. 2011;36(4):287.

    Article  CAS  Google Scholar 

  157. Kaufman PL, Rasmussen CA. Advances in glaucoma treatment and management: outflow drugs. Invest Ophthalmol Vis Sci. 2012;53(5):2495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tian B, Gabelt BT, Geiger B, Kaufman PL. The role of the actomyosin system in regulating trabecular fluid outflow. Exp Eye Res. 2009;88(4):713–7.

    Article  CAS  PubMed  Google Scholar 

  159. Tian B, Kaufman PL. Comparisons of actin filament disruptors and rho kinase inhibitors as potential antiglaucoma medications. Expert Rev Ophthalmol. 2012;7(2):177–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kazemi A, McLaren JW, Kopczynski CC, Heah TG, Novack GD, Sit AJ. The effects of netarsudil ophthalmic solution on aqueous humor dynamics in a randomized study in humans. J Ocul Pharmacol Ther. 2018;34(5):380–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Serle JB, Katz LJ, McLaurin E, Heah T, Ramirez-Davis N, Usner DW, Novack GD, Kopczynski CC, ROCKET-1 and ROCKET-2 Study Groups. Two phase 3 clinical trials comparing the safety and efficacy of Netarsudil to Timolol in patients with elevated intraocular pressure: rho kinase elevated IOP treatment trial 1 and 2 (ROCKET-1 and ROCKET-2). Am J Ophthalmol. 2018;186:116–27.

    Article  CAS  PubMed  Google Scholar 

  162. Weinreb RN, Liebmann JM, Martin KR, Kaufman PL, Vittitow JL. Latanoprostene bunod 0.024% in subjects with open-angle glaucoma or ocular hypertension: pooled phase 3 study findings. J Glaucoma. 2018;27(1):7–15.

    PubMed  Google Scholar 

  163. Barraza RA, Rasmussen CA, Loewen N, Cameron JD, Gabelt BT, Teo WL, Kaufman PL, Poeschla EM. Prolonged transgene expression with lentiviral vectors in the aqueous humor outflow pathway of nonhuman primates. Hum Gene Ther. 2009;20(3):191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Buie LK, Rasmussen CA, Porterfield EC, Ramgolam VS, Choi VW, Markovic-Plese S, Samulski RJ, Kaufman PL, Borrás T. Self-complementary AAV virus (scAAV) safe and long-term gene transfer in the trabecular meshwork of living rats and monkeys. Invest Ophthalmol Vis Sci. 2010;51(1):236–48.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Aktas Z, Tian B, McDonald J, Yamamato R, Larsen C, Kiland J, Kaufman PL, Rasmussen CA. Application of canaloplasty in glaucoma gene therapy: where are we? J Ocul Pharmacol Ther. 2014;30(2–3):277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lewallen M, Xie T. Cell-based therapies for retinal degenerative diseases: a thousand strategies. J Glaucoma. 2013;22(Suppl 5):S42–5.

    Article  PubMed  Google Scholar 

  167. Eveleth DD. Cell-based therapies for ocular disease. J Ocul Pharmacol Ther. 2013;29(10):844–54.

    Article  CAS  PubMed  Google Scholar 

  168. Cyranoski D. Stem cells cruise to clinic. Nature. 2013;494(7438):413.

    Article  CAS  PubMed  Google Scholar 

  169. Wright LS, Phillips MJ, Pinilla I, Hei D, Gamm DM. Induced pluripotent stem cells as custom therapeutics for retinal repair: Progress and rationale. Exp Eye Res. 2014;123:161–72. pii: S0014-4835(13)00345-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Phillips MJ, Capowski EE, Petersen A, Jansen AD, Barlow K, Edwards KL, Gamm DM. Generation of a rod-specific NRL reporter line in human pluripotent stem cells. Sci Rep. 2018;8(1):2370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Leach LL, Croze RH, Hu Q, Nadar VP, Clevenger TN, Pennington BO, Gamm DM, Clegg DO. Induced pluripotent stem cell-derived retinal pigmented epithelium: a comparative study between cell lines and differentiation methods. J Ocul Pharmacol Ther. 2016;32(5):317–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Singh R, Phillips MJ, Kuai D, Meyer J, Martin JM, Smith MA, Perez ET, Shen W, Wallace KA, Capowski EE, Wright LS, Gamm DM. Functional analysis of serially expanded human iPS cell-derived RPE cultures. Invest Ophthalmol Vis Sci. 2013;54(10):6767–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Langer KB, Ohlemacher SK, Phillips MJ, Fligor CM, Jiang P, Gamm DM, Meyer JS. Retinal ganglion cell diversity and subtype specification from human pluripotent stem cells. Stem Cell Reports. 2018;10(4):1282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhu W, Jain A, Gramlich OW, Tucker BA, Sheffield VC, Kuehn MH. Restoration of aqueous humor outflow following transplantation of iPSC-derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2017;58(4):2054–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Abu-Hassan DW, Li X, Ryan EI, Acott TS, Kelley MJ. Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells. 2015;33(3):751–61. https://doi.org/10.1002/stem.1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, Heller JP, Villasmil R, Bull ND, Martin KR, Tomarev SI. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain. 2014;137:503–19.

    Article  PubMed  Google Scholar 

  177. Levkovitch-Verbin H, Sadan O, Vander S, Rosner M, Barhum Y, Melamed E, Offen D, Melamed S. Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection. Invest Ophthalmol Vis Sci. 2010;51:6394–400.

    Article  PubMed  Google Scholar 

  178. Harper MM, Grozdanic SD, Blits B, Kuehn MH, Zamzow D, Buss JE, Kardon RH, Sakaguchi DS. Transplantation of bdnf secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci. 2011;52:4506–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51(4):2051–9.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Osborne A, Sanderson J, Martin KR. Neuroprotective effects of human mesenchymal stem cells and platelet-derived growth factor on human retinal ganglion cells. Stem Cells. 2018;36(1):65–78. https://doi.org/10.1002/stem.2722.

    Article  CAS  PubMed  Google Scholar 

  181. Divya MS, Rasheed VA, Schmidt T, Lalitha S, Hattar S, James J. Intraocular injection of ES cell-derived neural progenitors improve visual function in retinal ganglion cell-depleted mouse models. Front Cell Neurosci. 2017;11:295. https://doi.org/10.3389/fncel.2017.00295. eCollection 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Braunger BM, Ademoglu B, Koschade SE, Fuchshofer R, Gabelt BT, Kiland JA, Hennes-Beann EA, Brunner KG, Kaufman PL, Tamm ER. Identification of adult stem cells in Schwalbe’s line region of the primate eye. Invest Ophthalmol Vis Sci. 2014;55(11):7499–507.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Yun H, Zhou Y, Wills A, Du Y. Stem cells in the trabecular meshwork for regulating intraocular pressure. J Ocul Pharmacol Ther. 2016;32(5):253–60. https://doi.org/10.1089/jop.2016.0005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zhang Y, Cai S, Tseng SCG, Zhu YT. Isolation and expansion of multipotent progenitors from human trabecular meshwork. Sci Rep. 2018;8(1):2814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology. 1984;91(6):564–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Kaufman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Momont, A.C., Kaufman, P.L. (2019). Medical Therapy for Glaucoma-IOP Lowering Agents. In: Sun, X., Dai, Y. (eds) Medical Treatment of Glaucoma. Springer, Singapore. https://doi.org/10.1007/978-981-13-2733-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2733-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2732-2

  • Online ISBN: 978-981-13-2733-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics