Skip to main content

Tensile Testing and Evaluation of 3D-Printed PLA Specimens as per ASTM D638 Type IV Standard

  • Conference paper
  • First Online:
Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018)

Abstract

Additive Manufacturing is playing a major role in the manufacturing of parts by providing an alternative to the existing processes. However, strength of such 3D-printed parts using specific materials is still an area of current research. Polylactic acid, a biodegradable material, is one of the compatible materials in fused deposition modelling-based 3D printing process. Researchers have primarily focused on testing of PLA material as per ASTM D638 Type I standard. In this research ASTM D638 type IV specimens printed on FDM printer using PLA material are subjected to tensile testing and then compared relatively with the simulated results. Process involves preparation of ASTM specimens in Solidworks software followed by printing using PLA material in a Makerbot 3D printer, conditioning the printed specimens and then subjecting it to tensile testing in AutoGraph AG 15 universal testing machine. CAD model of the test specimens is then subjected to tensile loads in ANSYS software to obtain simulated tensile strength and maximum deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramya, A., Vanapalli, S.L.: 3D printing technologies in various applications. Int. J. Mech. Eng. Technol. 7(3), 396–409 (2016)

    Google Scholar 

  2. Dimitrov, D., van Wijck, W., Schreve, K., de Beer, N.: Investigating the achievable accuracy of three dimensional printing. Rapid Prototyp. J. 12(1), 42–52 (2006)

    Article  Google Scholar 

  3. Mcloughlin, L., Fryazinov, O., Moseley, M., Sanchez, M., Adzhiev, V., Comninos, P., et al.: Virtual sculpting and 3D printing for young people with disabilities. IEEE Comput. Graph. Appl. 36(1), 22–28 (2016)

    Article  Google Scholar 

  4. Joshi, S.C., Sheikh, A.A.: 3D printing in aerospace and its long-term sustainability. Virtual Phys. Prototyp. 10(4), 175–185 (2015)

    Article  Google Scholar 

  5. Shaffer, S., Yang, K., Vargas, J., Di Prima, M.A., Voit, W.: On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer. 55(23), 5969–5979 (2014)

    Article  Google Scholar 

  6. Es-Said, O., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., Pregger, B.A.: Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Process. 15(1), 107–122 (2000)

    Article  Google Scholar 

  7. Hossain, M.S., et al.: Improving tensile mechanical properties of FDM-manufactured specimens via modifying build parameters. In: 24 Annual International Solid Freeform Fabrication Symposium, vol. 1, pp. 380–392. Austin (2013)

    Google Scholar 

  8. More, M.P.: 3D printing making the digital real. Int. J. Eng. Sci. Res. Technol. 2(7) (2013)

    Google Scholar 

  9. Casavola, C., Cazzato, A., Moramarco, V., Pappalettere, C.: Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater. Des. 90, 453–458 (2016)

    Article  Google Scholar 

  10. Mohamed, O.A., Masood, S.H., Bhowmik, J.L.: Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv. Manuf. 3, 42–53 (2015)

    Article  Google Scholar 

  11. Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014)

    Article  Google Scholar 

  12. Domingo, M., Puigriol, J.M., Garcia, A.A., Lluma, J., Borros, S., Reyes, G.: Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Mater. Des. 83, 670–677 (2015)

    Google Scholar 

  13. Ning, F., Cong, W., Hu, Y., Wang, H.: Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J. Compos. Mater. 51(4), 451–462 (2016)

    Article  Google Scholar 

  14. Lanzotti, A., Grasso, M., Staiano, G., Martorelli, M.: The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3D printer. Rapid Prototyp. J. 21(5), 604–617 (2015)

    Article  Google Scholar 

  15. Ullu, E., Korkmaz, E., Yay, K., Ozdoganlar, O.B., Kara, L.B.: Enhancing the structural performance of additively manufactured objects through build orientation. J. Mech. Des. 137(11), 111410–111418 (2015)

    Article  Google Scholar 

  16. Fehri, S.M.K.: Thermal properties of plasticized poly (lactic acid) (PLA) containing nucleating agent. Int. J. Chem. Eng. Appl. 7(2), 85–88 (2016)

    Article  Google Scholar 

  17. Gordon, A.P.: An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyp. J. 22(2), 387–404 (2016)

    Google Scholar 

  18. Letcher, T.: Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. In: International Mechanical Engineering Congress and Exposition 2014, IMECE, vol. 2, pp. 1–8. Montreal (2014)

    Google Scholar 

  19. Chacón, J.M., Caminero, M.A., García-Plaza, E., Núñez, P.J.: Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection (2017)

    Google Scholar 

  20. Eng, C.C.: Enhancement of mechanical and dynamic mechanical properties of hydrophilic nanoclay reinforced polylactic acid/polycaprolactone/oil palm mesocarp fiber hybrid composites. Int. J. Polym. Sci. 2014, 1–8 (2014)

    Article  Google Scholar 

  21. GiitaSilverajah, V.S., Ibrahim, N.A., Zainuddin, N., Yunus, W.M.Z.W., Hassan, H.A.: Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend. Molecules 11729–11747 (2012)

    Google Scholar 

  22. ASTM Designation: D638—14 Standard Test Method for Tensile Properties of Plastics

    Google Scholar 

  23. Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M., Desobry, S.: Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. 9(5), 552–571 (2010)

    Google Scholar 

  24. Bijarimi, M., Ahmad, S., Rasid, R.: Mechanical, thermal and morphological properties of PLA/PP melt blends. In: International Conference on Agriculture, Chemical and Environmental Sciences 2012, ICACES, pp. 115–117. Dubai (2012)

    Google Scholar 

  25. Clarinval, A., Halleux, J.: Classification of biodegradable polymers. In: Smith, R. (ed.) Biodegradable Polymers for Industrial Applications, 1st edn. Taylor & Francis, Boca Raton, FL (2005)

    Chapter  Google Scholar 

  26. Ashby, M.F., Johnson, K.: Materials and Design: The Art and Science of Material Selection in Product Design, 3rd edn. Butterworth-Heinemann, Oxford, UK (2013)

    Google Scholar 

  27. Henton, D.E., Gruber, P., Lunt, J., Randall, J.: Polylactic acid technology. In: Mohanty, A., Misra, M., Drzal, L. (eds.) Natural Fibers, Biopolymers, and Biocomposites. Taylor & Francis, Boca Raton, FL (2005)

    Google Scholar 

  28. Subhani, A.: Influence of the processes parameters on the properties of the polylactides based bio and eco-biomaterials. PhD thesis, National Polytechnic Institute of Toulouse (2011)

    Google Scholar 

  29. ASTM Designation: D618—13 Standard Practice for Conditioning Plastics for Testing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeole Shivraj Narayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anand Kumar, S., Shivraj Narayan, Y. (2019). Tensile Testing and Evaluation of 3D-Printed PLA Specimens as per ASTM D638 Type IV Standard. In: Chandrasekhar, U., Yang, LJ., Gowthaman, S. (eds) Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2718-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2718-6_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2717-9

  • Online ISBN: 978-981-13-2718-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics