Skip to main content

Lattice Boltzmann Simulation of Double-Sided Deep Cavities at Low Reynolds Number

  • Conference paper
  • First Online:
Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018)

Abstract

Lattice Boltzmann method (LBM) has been created as an option computational technique conversely with conventional computational fluid dynamics (CFD) strategies. In the present work, the fluid flow of the two-dimensional low Reynolds number flow in a rectangular cavity with two opposite moving lids and different aspect ratios (depth-to-width ratios) is examined using LBM. The impacts of aspect ratio shifting from 1.2 to 10 on vortex structure in the cavity were watched. The streamline patterns were displayed in detail. As the perspective proportion is steadily expanded from 1.2, the stream structure creates the longitudinal way of the cavity and the quantity of vortices step by step increments with the expanding viewpoint proportion. The advancement of bigger external vortices is from the centre of the cavity and observed stream patterns were symmetric about the cavity centre at various proportion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohammad, A.: Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Code. Springer, London (2011)

    Book  Google Scholar 

  2. Perumal, D.A., Dass, A.K.: A Review on the development of lattice Boltzmann computation of macro fluid flows and heat transfer. Alexandria Eng. J. 54, 955–971 (2015)

    Article  Google Scholar 

  3. Perumal, D.A., Dass, A.K.: Application of lattice Boltzmann method for incompressible viscous flows. Appl. Math. Model. 37, 4075–4092 (2013)

    Article  MathSciNet  Google Scholar 

  4. Perumal, D.A., Dass, A.K.: Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by lattice Boltzmann method. Comput. Math. Appl. 61, 3711–3721 (2011)

    Article  MathSciNet  Google Scholar 

  5. He, S., Wu, L., Xu, T.: Periodicity and self-similarity of vortex evolution in a double lid-driven cavity flow. Procedia Eng. 31, 267–273 (2012)

    Article  Google Scholar 

  6. Ghia, U., Ghia, K.N., Shin, C.T.: High-resolutions for incompressible flow using Naiver-Stokes equations and a multigrid method. J. Comput. Phys. 43, 387–441 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Arumuga Perumal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kesana, B., Shetty, V.V., Arumuga Perumal, D. (2019). Lattice Boltzmann Simulation of Double-Sided Deep Cavities at Low Reynolds Number. In: Chandrasekhar, U., Yang, LJ., Gowthaman, S. (eds) Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2718-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2718-6_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2717-9

  • Online ISBN: 978-981-13-2718-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics