Skip to main content

Abstract

Printing small antenna structures for space application would be highly challenging, and the materials to be used for the antenna fabrication would have major impact on the performance of the antenna system. Antennas are primely fabricated using copper as the material. In recent times, various materials are being explored for their applicability, reliability, durability, and scalability with respect to antenna applications. In lieu of the high thermal conductivity of copper, which could lead to thermal expansion on exposure to sun’s rays and thus decrease its efficacy as an antenna; graphene has been a better competitor and contender for space antennas. Taking cost of synthesis and capital investment into consideration, this paper aims to give a face-lift to the other allotropic forms of carbon, namely graphite, lampblack, and activated charcoal, which are comparatively far cheaper and extensively available and could be on a par with graphene as far as antenna application is concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Straw, R.D., Severns, R., Beezley, B., Hare, E.: ARRL Antenna Handbook, 18th edn. The American Radio Relay League, Inc., Newington, CT (1998)

    Google Scholar 

  2. Llatser, I., et al.: Graphene-based nano-patch antenna for terahertz radiation. Photon Nanostruct: Fundam. Appl. (2012). https://doi.org/10.1016/j.photonics.2012.05.011

    Article  Google Scholar 

  3. Singh, G., Rajni, Marwaha, A.: A review of metamaterials and its applications. Int. J. Eng. Trends Technol. 19(6), 305–310 (2015)

    Article  Google Scholar 

  4. Wu, B.-I., Wang, W., Pacheco, J., Chen, X., Grzegorczyk, T., Kong, J.A.: A study of using metamaterials as antenna substrate to enhance gain. Prog. Electromagn. Res. 51, 295–328 (2005)

    Article  Google Scholar 

  5. Hanson, G.W.: Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag. 53(11), 3426–3435 (2005)

    Article  Google Scholar 

  6. Hao, J., Hanson, G.W.: Infrared and optical properties of carbon nanotube dipole antennas. IEEE Trans. Nanotechnol. 5(6), 766–775 (2006)

    Article  Google Scholar 

  7. Song, Lingnan, Myers, Amanda C., Adams, Jacob J., Zhu, Yong: Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl. Mater. Interfaces 6, 4248–4253 (2014)

    Article  Google Scholar 

  8. Nikitin, P.V., Lam, S., Rao, K.V.S.: Low cost silver ink RFID tag antennas. In: 2005 IEEE Antennas and Propagation Society International Symposium, IEEE Antennas and Propagation Society International Symposium Digest, vol. 4B, pp. 353–356. IEEE, Washington DC (2005)

    Google Scholar 

  9. Boan, B.J., Schwam, M.: Mesh-configured RF antenna formed of Knit graphite fibers. United States Patent, Appl. No.: 46,144, 5 May 1987, Patent Number: 4,812,854, 14 Mar 1989

    Google Scholar 

  10. Chen, X., Grzegorczyk, T.M., Wu, B.-I., Pacheco, J., Jr., Kong, J.A.: Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70(1), 016608-1–016608-7 (2004)

    Google Scholar 

  11. Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)

    Article  Google Scholar 

  12. Yilmaz, Turker, Akan, Ozgur B.: On the use of low terahertz band for 5G indoor mobile networks. Comput. Electr. Eng. 48, 164–173 (2015)

    Article  Google Scholar 

  13. Nassar, I.T., Weller, T.: An electrically-small, 3-D cube antenna fabricated with additive manufacturing. In: 2013 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), IEEE Radio and Wireless Week 2013, pp. 58–60. IEEE, Austin, Texas, USA (2013)

    Google Scholar 

  14. Nate, K.A., Hester, J., Isakov, M., Bahr, R., Tentzeris, M.M.: A fully printed multilayer aperture-coupled patch antenna using hybrid 3D/inkjet additive manufacturing technique. In: Proceedings of the 45th European Microwave Conference, 2015 European Microwave Conference (EuMC), 2015 European IEEE, Paris, France (2015)

    Google Scholar 

  15. Akbari, M., Khan, M.W.A., Hasani, M., Björninen, T., Sydänheimo, L., Ukkonen, L.: Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags. IEEE Antennas Wirel. Propag. Lett. 15, 1569–1572 (2015)

    Article  Google Scholar 

  16. Paredes, J.I., Villar-Rodil, S., Martínez-Alonso, A., Tascón, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008)

    Article  Google Scholar 

  17. Makeup and Beauty Home. http://www.makeupandbeautyhome.com/. Last accessed 2018/01/31

  18. Health vit. https://www.healthvit.com/. Last accessed 2018/01/29

  19. Shaker, G., Safavi-Naeini, S., Sangary, N., Tentzeris, M.M.: Inkjet printing of ultra-wideband (UWB) antennas on paper-based substrates. IEEE Antennas Wirel. Propag. Lett. 10, 111–114 (2011)

    Article  Google Scholar 

  20. Zhu, H., Narakathu, B.B., Fang, Z., Aijazi, A.T., Joyce, M., Atashbar, M., Hu, L.: A gravure printed antenna on shape-stable transparent nanopaper. Nanoscale 6, 9110–9115 (2014)

    Article  Google Scholar 

  21. Brennan, P.J., Fedor, C., Pausch, G.: Sunlight, UV, & accelerated weathering. Kunststoffe - German Plastics 78(4), 323–327 (1988)

    Google Scholar 

  22. Wikipedia. https://en.wikipedia.org/wiki/Main_Page. Last accessed 2018/02/05

  23. Pottasch, S.R.: The lower solar corona: interpretation of the ultraviolet spectrum. Astrophys. J. 137, 945–966 (1963)

    Article  Google Scholar 

  24. Godbout, S., Guimont, H., Marquis, A., De Foy, C.: A comparison of halogen and incandescent infrared lamps for piglets. Can. Biosys. Eng. 45, 5.15–5.19 (2003)

    Google Scholar 

  25. Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21(5), 836–850 (1953)

    Article  Google Scholar 

  26. Arora, R.C.: Refrigeration and Air Conditioning. PHI Learning Private Limited, New Delhi (2010)

    Google Scholar 

  27. Explainthatstuff. http://www.explainthatstuff.com/. Last accessed 2018/01/27

  28. Howstuffworks. https://www.howstuffworks.com/. Last accessed 2018/01/28

  29. Chennai Metco. http://www.chennaimetco.com/index.html. Last accessed 2018/01/02

  30. MITOPENCOURSEWARE. https://ocw.mit.edu/index.htm. Last accessed 2018/01/30

Download references

Acknowledgements

The authors would like to acknowledge Dr. Gowthaman Swaminathan—Director R&D, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology; Dr. Radhakrishnan Narayanaswamy—Vel Tech TBI Biowaste Management Laboratory; and Dr. C. Ramesh Kumar—Organic Chemistry Laboratory, for extending their research facilities for prototyping and calibrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ram, P., Sankar, M.A., Renganathan, N.G. (2019). Studies on Carbon Materials-Based Antenna for Space Applications. In: Chandrasekhar, U., Yang, LJ., Gowthaman, S. (eds) Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2718-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2718-6_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2717-9

  • Online ISBN: 978-981-13-2718-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics