Skip to main content

From Euler’s Play with Infinite Series to the Anomalous Magnetic Moment

  • Conference paper
  • First Online:
Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 (LT-XII/QTS-X 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 263))

Included in the following conference series:

Abstract

During a first St. Petersburg period Leonhard Euler, in his early twenties, became interested in the Basel problem: summing the series of inverse squares. In the words of André Weil [W] “as with most questions that ever attracted his attention, he never abandoned it”. Euler introduced on the way the alternating “phi-series”, the better converging companion of the zeta function, the first example of a polylogarithm at a root of unity. He realized - empirically! - that odd zeta values appear to be new (transcendental?) numbers. It is amazing to see how, a quarter of a millennium later, the numbers Euler played with, “however repugnant” this game might have seemed to his contemporary lovers of the “higher kind of calculus”, reappeared in the first analytic calculation (by Laporta and Remiddi) of \(g-2\) - the anomalous magnetic moment of the electron, the most precisely calculated and measured physical quantity [K]. Mathematicians, on the other hand, are reviving the dream of Galois of uncovering a group structure of the periods, including the same multiple zeta values - the mixed Tate motives, inspired by ideas of Grothendieck and appearing in a variety of subjects - from algebraic geometry to Feynman amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A first hand review of Euler’s work and an elementary introduction to multple zeta values is contained in Sects. 1–2 of Cartier’s Bourbaki lecture [24].

  2. 2.

    A definitive collection of Euler’s works, Opera Omnia, has been published since 1911 by the Euler Commission of the Swiss Academy of Sciences. By the time of the appearance of his first full scale biography [21], at the end of 2015 the edition is nearing completion with over 80 large volumes published. The Eneström index of Euler’s papers counts 866 entries. A concise (30-page) biography of Euler with color illustrations is contained in [34]; shorter biographical sketches can be found in [5, 62].

  3. 3.

    Introduced by Sommerfeld (1916): \(4\pi \epsilon _0\hbar c\alpha = e^2\); in modern particle physics texts the vacuum permittivity \(\epsilon _0\) is taken as unity.

  4. 4.

    Interviewed some 37 years later (in 1986) Norman Kroll said: “[The errors] were arithmetic...The thing that I learned from that is: in doing a complicated calculation, you have to take the same kinds of precautions that an experimenter takes to see that dirt doesn’t get in his apparatus. We had some internal checks but not nearly enough.” -[58].

  5. 5.

    Hans Dehmelt (1922–2017) shared the 1989 Nobel Prize in Physics “for the development of the ion trap technique”.

  6. 6.

    Kinoshita uses \(A_1^{(2n)}\) instead of \(a_n\).

  7. 7.

    Is it possible that the hero of these (and other) calculations, Stefano Laporta, never had a tenure in Bologna (as I learned from David Broadhurst, December, 2014)?

  8. 8.

    More generally one is dealing with integrands depending on external momenta and masses, again expressed as ratios of polynomials [16] (explained in Panzer’s thesis [47]).

  9. 9.

    “Mes principales méditations depuis quelque temps étaient dirigées sur l’application à l’analyse transcendante de la théorie de l’ambiguité.” - see [3].

  10. 10.

    Motivic periods were first associated with graph polynomials in [7]. An accessible review of formal (and motivic) double zeta values is contained in [25].

  11. 11.

    There are, unfortunately, two opposite conventions of writing this coaction, right and left, in [16, 17] and in [48], respectively. We adopt that of [48] which coincides with the one of our earlier work [59, 60].

References

  1. S. Abrew, R. Britto, C. Duhr, E. Gardi, Diagrammatic Hopf algebra of cut Feynman integrals: the one loop case, arXiv:1704.07931 [hep-th] (74 pages).

  2. L. Adams, C. Bogner, S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys. 55 (2014) 102301, arXiv:1405.5640 [hep-ph]; see also arXiv:1504.03255, 1512.05630 [hep-ph].

    Article  MathSciNet  Google Scholar 

  3. Y. André, Ambiguity theory, old and new, Bolletino U.M.I. (8) I (2008); arXiv:0805.2568 [math.GM].

  4. Y. André, Galois theory, motives and transcendental numbers, in: Renormalization and Galois Theories, IRMA Lectures Math. Theor. Phys. 15 Eur. Math. Soc., Zürich, 2009, pp. 165–177; arXiv:0805.2569.

  5. R. Ayoub, Euler and the zeta function, Amer. Math. Monthly 81 (1974) 1067–1086.

    Article  MathSciNet  Google Scholar 

  6. P. Belkale, P. Brosnan, Periods and Igusa local zeta functions, Int. Res. Notices 2003:49 (2003) 2655–2670.

    Google Scholar 

  7. S. Bloch, H. Esnault, D. Kreimer, On motives associated to graph polynomials, Comm. Math. Phys. 267:1 (2006) 181–225; math/0510011.

    Article  MathSciNet  Google Scholar 

  8. C. Bogner, S. Weinzierl, Periods and Feynman integrals, J. Math. Phys. 50 (2009) 042302; arXiv:0711.4863v2 [hep-th].

    Article  MathSciNet  Google Scholar 

  9. D.J. Broadhurst, Multiple zeta values and modular forms in quantum field theory, C. Schneider, J. Blümlein (eds.) Computer Algebra and Quantum Field Theory, Texts and Monographs in Symbolic Computations, Springer, Wien 2013, pp. 33–73.

    MATH  Google Scholar 

  10. D.J. Broadhurst, Multiple Deligne values: a data mine with empirically tamed denominators, arXiv:1409.7204 [hep-th].

  11. D.J. Broadhurst, D. Kreimer, Knots and numbers in \(\phi ^4\) to 7 loops and beyond, Int. J. Mod. Phys. 6C (1995) 519–524; Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B393 (1997) 403–412; hep-th/9609128.

    Google Scholar 

  12. J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves I: general formalism, arXiv:1712.07089 [hep-th] (55 p.); -, - II: an application to sunrise integral, arXiv:1712.07095 [hep-ph] (22 p.).

  13. F. Brown, Iterated integrals in quantum field theory, in: Geometric and Topological Methods for Quantum Field Theory, Proceedings of the 2009 Villa de Leyva Summer School, Eds. A Cardona et al., Cambridge Univ. Press, 2013, pp.188–240.

    Google Scholar 

  14. F. Brown, On the decomposition of motivic zeta values, Advanced Studies in Pure Mathematics 63 (2012) 31–58; arXiv:1102.1310v2 [math.NT].

  15. F. Brown, Mixed Tate motives over Z, Annals of Math. 175:1 (2012) 949–976; arXiv:1102.1312 [math.AG].

    Article  MathSciNet  Google Scholar 

  16. F. Brown, Periods and Feynman amplitudes, Talk at the ICMP, Santiago de Chile, arXiv:1512.09265 [math-ph].

  17. F. Brown, Feynman amplitudes, coaction principle, and cosmic Galois group, Commun. in Number Theory and Phys. 11:3 (2017) 453–555; arXiv:1512.06409v2 [math-ph]; -, Notes on motivic periods, Commun. in Number Theory and Phys. 11:3 (2017) 557–655; arXiv:1512.06410 [math.NT].

    Article  MathSciNet  Google Scholar 

  18. F. Brown, A. Levin, Multiple elliptic polylogarithms, arXiv:1110.6917v2 [math.NT].

  19. F. Brown, O. Schnetz, A K3 in \(\phi ^4\), Duke Math. Jour. 161:10 (2012) 1817–1862; arXiv:1006.4064v5 [math.AG]; -, -, Modular forms in quantum field theories, Commun. Number Theory Phys. 7:2 (2013) 293–325; arXiv:1304.5342v2 [math.AG].

  20. F. Brown, O. Schnetz, Proof of the zig-zag conjecture, arXiv:1208.1890v2 [math.NT].

  21. R.S. Calinger, Leonhard Euler: Mathematical Genius in the Enlightenment, Princeton Univ. Press, 2015, 696 pages.

    Google Scholar 

  22. S. Caron-Huot, L. Dixon, A. McLeod, M. von Hippel, Bootstrapping a five loop amplitude using Steinman relations, Phys. Rev. Lett. 117:24 (2016) 241601; arXiv:1609.00609v2 [hep-th].

  23. P. Cartier, La folle journée de Grothendieck à Connes et Kontsevich, Evolution des notions d’espace et de symétrie, Publication Mathématiques de l’IHES, S88 (1998) 23–42.

    Google Scholar 

  24. P. Cartier, Fonctions polylogarithmes, nombre polyzetas et groupes pro-unipotents,Asterisqye 282 (2002) Séminaure Bourbaki 43:885 (2000–2001) 137–173.

    Google Scholar 

  25. P. Cartier, On the double zeta values, Advanced Studies in pure Math. 63 (2012) 91–119.

    Google Scholar 

  26. K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831–879.

    Article  MathSciNet  Google Scholar 

  27. A. Connes, M. Marcolli, Renormalization and motivic Galois theory, arXiv:math/0409306.

  28. P. Deligne, Multizetas d’aprés Francis Brown, Séminaire Bourbaki 64ème année, n. 1048.

    Google Scholar 

  29. L.J. Dixon, The principle of maximal transcendentality and the four-loop collinear anomalous dimension, arXiv:1712.07274.

  30. C. Duhr, Mathematical aspects of scattering amplitudes, arXiv:1411.7538 [hep-ph].

  31. F.J. Dyson, Divergence of perturbation series in quantum electrodynamics, Phys. Rev. 85:4 (1952) 631–632.

    Article  MathSciNet  Google Scholar 

  32. G. Gabrielse, D. Hanneke, Precision pins down the electron’s magnetism, CERN Courier, October 2006.

    Google Scholar 

  33. Galileo Galilei, Dialogue Concerning the Two Chief World Systems (1632), translated by Stillman Drake (end of the First Day; available electronically).

    Google Scholar 

  34. W. Gautschi, Leonhard Euler: His Life, the Man, and His Works, SIAM Review 50:1 (2008) 3–33.

    Article  MathSciNet  Google Scholar 

  35. J.K. Golden, A.B. Goncharov, M. Spradlin, C. Vergu, A. Volovich, Motivic amplitudes and cluster coordinates, arXiv:1305.1617 [hep-th]; J.K. Golden, M. Spradlin, The differential of all two-loop MHV amplitudes in N=4 Yang Mills theory, arXiv:1306.1833 [hep-th].

  36. J.M. Gracia-Bondia, H. Gutierrez-Garro, J.C. Varilly, Improved Epstein-Glaser renormalization in x-space. III Versus differential renormalization, Nucl. Phys. B886 (2014) 824–826; arXiv:1403.1785v3.

  37. B. Hayes, g-ology, Amer. Scientist 92 (2004) 212–216.

    Google Scholar 

  38. M.E. Hoffman, Multiple harmonic series, Pacific Jour. Math. 152 (1992) 275–290.

    Article  MathSciNet  Google Scholar 

  39. M. Kontsevich, D. Zagier, Periods, in:Mathematics - 20101 and beyond, B. Engquist, W. Schmid, eds., Springer, Berlin et al. 2001, pp. 771–808.

    Google Scholar 

  40. Kinoshita, Tenth-order QED contribution to the electron g2 and high precision test of quantum electrodynamics, in: Proceedings of the Conference in Honor of te 90th Birthday of Freeman Dyson, World Scientific, 2014, pp. 148–172.

    Google Scholar 

  41. J.C. Lagarias, Euler’s constant: Euler’s work and modern developments, Bull. Amer. Math. Soc. 50:4 (2013) 527–628.

    Article  MathSciNet  Google Scholar 

  42. S. Laporta, High precision calculation of the 4-loop contribution to the electron \(g-2\) in QED, arXiv:1704.06996 [hep-ph].

  43. S. Laporta, E. Remiddi, The analytical value of the electron \(g-2\) at order \(\alpha ^3\) in QED, Phys. Lett. B379 (1996) 283–291; arXiv:hep-ph/9602417.

  44. B.E. Lautrup, A. Peterman, E. de Rafael, Recent developments in the comparison between theory and experiment in quantum electrodynamics, Physics Reports 3:4 (1972) 193–260.

    Article  Google Scholar 

  45. S. Müller-Stach, What is a period?, Notices of the AMS (2014); arXiv:1407.2388 [math.NT].

  46. N.M. Nikolov, R. Stora, I. Todorov, Renormalization of massless Feynman amplitudes as an extension problem for associate homogeneous distributions, Rev. Math. Phys. 26:4 (2014) 1430002 (65 pages); CERN-TH-PH/2013-107; arXiv:1307.6854 [hep-th].

    Article  MathSciNet  Google Scholar 

  47. E. Panzer, Feynman integrals via hyperlogarithms, Proc. Sci. bf 211 (2014) 049; arXiv:1407.0074 [hep-ph]; Feynman integrals and hyperlogarithms, PhD thesis, 220 p. 1506.07243 [math-ph].

  48. E. Panzer, O. Schnetz, The Galois coaction on \(\phi ^4\) periods, Commun. in Number Theory and Phys. 11:3 (2017) 657–705; arXiv:1603.04289v2 [hep-th].

  49. A. Petermann, Fourth order magnetic moment of the electron, Helv. Phys. Acta 30 (1957) 407–408; Nucl. Phys. 5 (1958) 677–683.

    Google Scholar 

  50. E. Remiddi, J.A.M. Vermaseren, Harmonic polylogarithms, Int.J. Mod. Phys. A15 (2000) 725–754; arXiv:hep-ph/9905237.

    Article  MathSciNet  Google Scholar 

  51. O. Schnetz, Natural renormalization, J. Math. Phys. 38 (1997) 738–758; hep-th/9610025.

    Article  MathSciNet  Google Scholar 

  52. O. Schnetz, Quantum periods: A census of \(\phi ^4\) transcendentals, Commun. in Number Theory and Phys. 4:1 (2010) 1–48; arXiv:0801.2856v2.

  53. O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. in Number Theory and Phys. 8:4 (2014) 589–685; arXiv:1302.6445v2 [math.NT].

    Article  MathSciNet  Google Scholar 

  54. O. Schnetz, Galois coaction on the electron anomalous magnetic moment, arXiv:1711.05118 [math-ph].

  55. S.S. Schweber, QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton Univ. Press, Princeton 1994 (XXVII+732 pages).

    Google Scholar 

  56. C.M. Sommerfield, The magnetic moment of the electron, Phys. Rev. 107 (1957) 328–329; Ann. of Phys. 5 (1958) 26–57.

    Article  Google Scholar 

  57. J. Steuding, An Introduction to the Theory of L-Functions, A course given in Madrid, 2005-06.

    Google Scholar 

  58. D. Styer, Calculation of the anomalous magnetic moment of the electron, June 2012 (available electronically).

    Google Scholar 

  59. I. Todorov, Perturbative quantum filed theory meets number theory, Extended version of a talk at the 2014 ICMAT Research Trimester Multiple Zeta Values, Multiple Polylogarithms and Quantum Field Theory (to be published); IHES/P/16/02.

    Google Scholar 

  60. I. Todorov, Hyperlogarithms and periods in Feynman amplitudes, Chapter 10 in: Springer Proceedings in Mathematics and Statistics191, International Workshop Lie Theory and Its Applications in Physics (LT-11), June 2015, Varna, Bulgaria, V.K. Dobrev (ed.), Springer, Tokyo-Heidelberg 2016, pp. 151–167; arXiv:1611.09323 [math-ph].

  61. V.S. Varadarajan, Euler and his work on infinite series, Bull. Amer. Math. Soc. 44:4 (2007) 515–539.

    Article  MathSciNet  Google Scholar 

  62. A. Weil, Number Theory - An Approach through history from Hammurapi to Legendre, Birkhäuser, Basel 1983, 2007.

    Google Scholar 

  63. A. Weil, Prehistory of the zeta-function, Number Theory, Trace Formula and Discrete Groups, Academic Press, N.Y. 1989, pp. 1–9.

    MATH  Google Scholar 

  64. Don Zagier, The dilogarithm function, in: Frontiers in Number Theory, Physics and Geometry II, Springer, Berlin et al. 2006, pp. 3–65.

    Google Scholar 

  65. Don Zagier, Values of zeta functions and their applications, in: First European Congress of Mathematics (Paris 1992) Progress in Mathwematics 120 Birkhäuser, Basel, 1994, pp. 497–512.

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Pierre Cartier for his critical remarks. The author thanks IHES for hospitality during the final stage of this work. He acknowledges the help of Mikhail Stoilov and partial support by Bulgarian NSF Grant DN-18/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Todorov, I. (2018). From Euler’s Play with Infinite Series to the Anomalous Magnetic Moment. In: Dobrev, V. (eds) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 . LT-XII/QTS-X 2017. Springer Proceedings in Mathematics & Statistics, vol 263. Springer, Singapore. https://doi.org/10.1007/978-981-13-2715-5_3

Download citation

Publish with us

Policies and ethics