Skip to main content

Non-commutativity in Unified Theories and Gravity

  • Conference paper
  • First Online:
Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 (LT-XII/QTS-X 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 263))

Included in the following conference series:

  • 666 Accesses

Abstract

First, we briefly review the Coset Space Dimensional Reduction scheme and the results of the best model so far. Then, we present the introduction of fuzzy coset spaces used as extra dimensions and perform a dimensional reduction. In turn, we describe a construction which mimics the results of a reduction, starting from a 4-dimensional theory and we present a successful example of a dynamical generation of fuzzy spheres. Finally, we propose a construction of the 3-d gravity as a gauge theory on specific non-commutative spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A coset space is called symmetric when \(f_{ab}^c=0\).

  2. 2.

    The \(S^2\) metric can be expressed in terms of the Killing vectors as \(g^{\alpha \beta }=\dfrac{1}{R^2}\xi ^\alpha _a\xi _a^\beta \).

  3. 3.

    In general, k is a parameter related to the size of the fuzzy coset space. In the case of the fuzzy sphere, k is related to the radius of the sphere and the integer l.

  4. 4.

    Also, \(\text {Tr}\text {tr}_G\) is interpreted as the trace of the U(NP) matrices.

  5. 5.

    See also [47].

  6. 6.

    Also modulo 3.

  7. 7.

    In case of ordinary reduction of a 10-dimensional \(\mathcal {N}=1\) SYM theory, one obtains an \(\mathcal {N}=4\) SYM Yang-Mills theory in four dimensions having a global \(SU(4)_R\) symmetry which is identified with the tangent space SO(6) of the extra dimensions [14, 15, 61].

  8. 8.

    The SSB terms that will be inserted into \(V_{\mathcal {N}=1}^{proj}(\phi )\), are purely scalar. Although this is enough for our purpose, it is obvious that more SSB terms have to be included too, in order to obtain the full SSB sector [60].

  9. 9.

    Similar approaches have been studied in the framework of YM matrix models [63], lacking phenomenological viability.

  10. 10.

    As anomalous gaining mass by the Green-Schwarz mechanism and therefore they decouple at the low energy sector of the theory [58].

  11. 11.

    In the Lorentzian case there is a similar construction, where the 3-dimensional spacetime with Lorentzian signature is foliated by fuzzy hyperboloids [88].

References

  1. Green M.B., Schwarz J.H., Witten E., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1987; Green M.B., Schwarz J.H., Witten E., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1987; Polchinski J., Cambridge University Press, Cambridge, 1998; Polchinski J., Cambridge University Press, Cambridge, 1998; Blumenhagen R., Lüst D., Theisen S., Springer, 2013.

    Google Scholar 

  2. Gross D.J., Harvey J.A., Martinec E.J., Rohm R., Nuclear Phys. B256 (1985) 253; Gross D.J., Harvey J.A., Martinec E.J., Rohm R., Phys. Rev. Lett. 54 (1985) 502.

    Google Scholar 

  3. Forgács P., Manton N.S., Comm. Math. Phys. 72 (1980) 15–35.

    Google Scholar 

  4. Kapetanakis D., Zoupanos G., Phys. Rep. 219 (1992).

    Google Scholar 

  5. Kubyshin Yu.A., Mourão J.M., Rudolph G., Volobujev I.P., Lecture Notes in Physics, Vol. 349, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  6. Scherk J., Schwarz J.H., Nuclear Phys. B153 (1979) 61–88.

    Google Scholar 

  7. Manton N.S., Nuclear Phys. B193 (1981) 502–516.

    Google Scholar 

  8. Chapline G., Slansky R., Nuclear Phys. B209 (1982) 461–483.

    Google Scholar 

  9. P. Candelas, G. T. Horowitz, A. Strominger, E. Witten, Nucl. Phys. B258, (1985) 46

    Article  Google Scholar 

  10. Cardoso G.L., Curio G., Dall’Agata G., Lüst D., Manousselis P., Zoupanos G., Nucl. Phys. B 652 (2003) 5–34, hep-th/0211118; Strominger A., Nucl. Phys. B274 (1986) 253; Lüst D., Nucl.Phys. B276 (1986) 220; Castellani L., Lüst D., Nucl.Phys. B296 (1988) 143.

    Google Scholar 

  11. K. Becker, M. Becker, K. Dasgupta and P. S. Green, JHEP 0304 (2003) 007, arXiv:hep-th/0301161; K. Becker, M. Becker, P. S. Green, K. Dasgupta and E. Sharpe, Nucl. Phys. B678 (2004) 19, arXiv:hep-th/0310058; S. Gurrieri, A. Lukas and A. Micu, Phys. Rev. D70 (2004) 126009, arXiv:hep-th/0408121; I. Benmachiche, J. Louis and D. Martinez-Pedrera, Class. Quant. Grav. 25 (2008) 135006, arXiv:0802.0410 [hep-th]; A. Micu, Phys. Rev. D 70 (2004) 126002, hep-th/0409008; A. R. Frey and M. Lippert, Phys. Rev. D 72 (2005) 126001, arXiv:hep-th/0507202; P. Manousselis, N. Prezas and G. Zoupanos, Nucl. Phys. B739 (2006) 85, arXiv:hep-th/0511122; A. Chatzistavrakidis, P. Manousselis and G. Zoupanos, Fortsch. Phys. 57 (2009) 527, arXiv:0811.2182 [hep-th]; A. Chatzistavrakidis and G. Zoupanos, JHEP 0909 (2009) 077, arXiv:0905.2398 [hep-th]; B. P. Dolan and R. J. Szabo, JHEP 0908 (2009) 038, arXiv:0905.4899 [hep-th]; O. Lechtenfeld, C. Nolle and A. D. Popov, JHEP 1009 (2010) 074, arXiv:1007.0236 [hep-th]; A. D. Popov and R. J. Szabo, JHEP 202 (2012) 033, arXiv:1009.3208 [hep-th]; M. Klaput, A. Lukas and C. Matti, JHEP 1109 (2011) 100, arXiv:1107.3573 [hep-th]; A. Chatzistavrakidis, O. Lechtenfeld and A. D. Popov, JHEP 1204 (2012) 114, arXiv:1202.1278 [hep-th]; J. Gray, M. Larfors and D. Lüst, , JHEP 1208 (2012) 099, arXiv:1205.6208 [hep-th]; M. Klaput, A. Lukas, C. Matti and E. E. Svanes, JHEP 1301 (2013) 015, arXiv:1210.5933 [hep-th].

  12. N. Irges and G. Zoupanos, Phys. Lett. B698, (2011) 146, arXiv:hep-ph/1102.2220; N. Irges, G. Orfanidis, G. Zoupanos, arXiv:1205.0753 [hep-ph], PoS CORFU2011 (2011) 105.

  13. Butruille J. -B., arXiv:math.DG/0612655.

  14. P. Manousselis, G. Zoupanos, Phys.Lett. B518 (2001) 171–180, hep-ph/0106033; P. Manousselis, G. Zoupanos, Phys.Lett. B504 (2001) 122–130

    Google Scholar 

  15. P. Manousselis, G. Zoupanos, JHEP 0411 (2004) 025, arXiv:hep-ph/0406207; P. Manousselis, G. Zoupanos, JHEP 0203 (2002) 002.

  16. Connes A., Academic Press, Inc., San Diego, CA, 1994.

    Google Scholar 

  17. Madore J., London Mathematical Society Lecture Note Series, Vol. 257, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  18. J. Madore, Class. Quant. Grav. 9 (1992) 69. https://doi.org/10.1088/0264-9381/9/1/008

    Article  Google Scholar 

  19. Buric M., Grammatikopoulos T., Madore J., Zoupanos G., JHEP 0604 (2006) 054; Buric M., Madore J., Zoupanos G., SIGMA 3:125,2007, arXiv:0712.4024 [hep-th].

  20. T. Filk, Phys. Lett. B 376 (1996) 53; J. C. Várilly and J. M. Gracia-Bondía, Int. J. Mod. Phys. A 14 (1999) 1305 [arXiv:hep-th/9804001]; M. Chaichian, A. Demichev and P. Presnajder, Nucl. Phys. B 567 (2000) 360, arXiv:hepth/9812180; S. Minwalla, M. Van Raamsdonk and N. Seiberg, JHEP 0002 (2000) 020, arXiv:hep-th/9912072.

  21. H. Grosse and R. Wulkenhaar, Lett. Math. Phys. 71 (2005) 13, arXiv:hep-th/0403232.

    Article  MathSciNet  Google Scholar 

  22. H. Grosse and H. Steinacker, Adv. Theor. Math. Phys. 12 (2008) 605, arXiv:hep-th/0607235; H. Grosse and H. Steinacker, Nucl. Phys. B 707 (2005) 145, arXiv:hep-th/0407089.

  23. Connes A., Lott J., Nuclear Phys. B Proc. Suppl. 18 (1991), 29–47; Chamseddine A.H., Connes A., Comm. Math. Phys. 186 (1997), 731–750, arXiv:hep-th/9606001; Chamseddine A.H., Connes A., Phys. Rev. Lett. 99 (2007), 191601, arXiv:0706.3690.

  24. Martín C.P., Gracia-Bondía M.J., Várilly J.C., Phys. Rep. 294 (1998), 363–406, arXiv:hep-th/9605001.

  25. Dubois-Violette M., Madore J., Kerner R., Phys. Lett. B217 (1989), 485–488; Dubois-Violette M., Madore J., Kerner R., Classical Quantum Gravity 6 (1989), 1709–1724; Dubois-Violette M., Kerner R., Madore J., J. Math. Phys. 31 (1990), 323–330.

    Google Scholar 

  26. Madore J., Phys. Lett. B 305 (1993), 84–89; Madore J., (Sobotka Castle, 1992), Fund. Theories Phys., Vol. 52, Kluwer Acad. Publ., Dordrecht, 1993, 285–298. arXiv:hep-ph/9209226.

  27. Connes A., Douglas M.R., Schwarz A., JHEP (1998), no.2, 003, arXiv:hep-th/9711162.

  28. Seiberg N., Witten E., JHEP (1999), no.9, 032, arXiv:hep-th/9908142.

  29. N.Ishibashi, H.Kawai, Y.Kitazawa and A.Tsuchiya, Nucl. Phys. B498 (1997) 467, arXiv:hep-th/9612115.

    Article  Google Scholar 

  30. Jurčo B., Schraml S., Schupp P., Wess J., Eur. Phys. J. C 17 (2000), 521-526, arXiv:hep-th/0006246; Jurčo B., Schupp P., Wess J., Nuclear Phys. B 604 (2001), 148–180, arXiv:hep-th/0102129; Jurčo B., Moller L., Schraml S., Schupp S., Wess J., Eur. Phys. J. C 21 (2001), 383–388, arXiv:hep-th/0104153; Barnich G., Brandt F., Grigoriev M., JHEP (2002), no.8, 023, arXiv:hep-th/0206003.

  31. Chaichian M., Prešnajder P., Sheikh-Jabbari M.M., Tureanu A., Eur. Phys. J. C 29 (2003), 413–432, arXiv:hep-th/0107055.

    Article  MathSciNet  Google Scholar 

  32. Calmet X., Jurčo B., Schupp P., Wess J., Wohlgenannt M., Eur. Phys. J. C 23 (2002), 363–376, arXiv:hep-ph/0111115; Aschieri P., Jurčo B., Schupp P., Wess J., Nuclear Phys. B 651 (2003), 45–70, arXiv:hep-th/0205214; Behr W., Deshpande N.G., Duplancic G., Schupp P., Trampetic J., Wess J., Eur.Phys.J.C29: 441–446, 2003.

  33. Aschieri P., Madore J., Manousselis P., Zoupanos G., JHEP (2004), no. 4, 034, arXiv:hep-th/0310072; Aschieri P., Madore J., Manousselis P., Zoupanos G., Fortschr. Phys. 52 (2004), 718–723, arXiv:hep-th/0401200; Aschieri P., Madore J., Manousselis P., Zoupanos G., Conference: C04-08-20.1 (2005) 135–146, arXiv:hep-th/0503039.

  34. Aschieri P., Grammatikopoulos T., Steinacker H., Zoupanos G., JHEP (2006), no. 9, 026, arXiv:hep-th/0606021; Aschieri P., Steinacker H., Madore J., Manousselis P., Zoupanos G., arXiv:0704.2880.

  35. Steinacker H., Zoupanos G., JHEP (2007), no. 9, 017, arXiv:0706.0398.

  36. A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, Fortsch.Phys. 58 (2010) 537–552, arXiv:0909.5559 [hep-th].

  37. A. Chatzistavrakidis, H. Steinacker and G. Zoupanos, JHEP 1005 (2010) 100, arXiv:hep-th/1002.2606 A. Chatzistavrakidis and G. Zoupanos, SIGMA 6 (2010) 063, arXiv:hep-th/1008.2049.

  38. D. Gavriil, G. Manolakos, G. Orfanidis and G. Zoupanos, Fortsch. Phys. 63 (2015) 442 https://doi.org/10.1002/prop.201500022 [arXiv:1504.07276 [hep-th]]; G. Manolakos and G. Zoupanos, Phys. Part. Nucl. Lett. 14 (2017) no.2, 322. https://doi.org/10.1134/S1547477117020194; G. Manolakos and G. Zoupanos, Springer Proc. Math. Stat. 191 (2016) 203 https://doi.org/10.1007/978-981-10-2636-2-13 [arXiv:1602.03673 [hep-th]].

  39. E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,” Nucl. Phys. B 311 (1988) 46.

    Article  MathSciNet  Google Scholar 

  40. A. Chatzistavrakidis, L. Jonke, D. Jurman, G. Manolakos, P. Manousselis, G. Zoupanos, “Noncommutative gauge theory and gravity in three dimensions”, to appear.

    Google Scholar 

  41. C. Wetterich, Nucl. Phys. B222, 20 (1983); L. Palla, Z.Phys. C 24, 195 (1984); K. Pilch and A. N. Schellekens, J. Math. Phys. 25, 3455(1984); P. Forgacs, Z. Horvath and L. Palla, Z. Phys. C30, 261(1986); K. J. Barnes, P. Forgacs, M. Surridge and G. Zoupanos, Z. Phys. C33, 427(1987).

    Google Scholar 

  42. G. Chapline and N. S. Manton, Nucl. Phys. B184, 391(1981); F.A.Bais, K. J. Barnes, P. Forgacs and G. Zoupanos, Nucl. Phys. B263, 557(1986); Y. A. Kubyshin, J. M. Mourao, I. P. Volobujev, Int. J. Mod. Phys. A 4, 151(1989).

    Article  Google Scholar 

  43. J. Harnad, S. Shnider and L. Vinet, J. Math. Phys. 20, 931(1979); 21, 2719(1980); J. Harnad, S. Shnider and J. Tafel, Lett. Math. Phys. 4, 107(1980).

    Google Scholar 

  44. K. Farakos, G. Koutsoumbas,M. Surridge and G. Zoupanos, Nucl. Phys. B291, 128(1987); ibid., Phys. Lett. B191, 135(1987).

    Article  Google Scholar 

  45. Andrews, R.P. et al. Nucl.Phys. B751 (2006) 304–341 arXiv:hep-th/0601098 SWAT-06-455

  46. Madore J., Schraml S., Schupp P., Wess J., Eur. Phys. J. C 16 (2000) 161–167, arXiv:hep-th/0001203.

  47. Harland D., Kurkçuoǧlu S., Nucl. Phys. B 821 (2009), 380–398, arXiv:0905.2338.

  48. Kachru S., Silverstein E., Phys. Rev. Lett. 80 (1998), 4855–4858, arXiv:hep-th/9802183.

    Article  MathSciNet  Google Scholar 

  49. Steinacker H., Nuclear Phys. B 679 (2004), 66–98, arXiv:hep-th/0307075.

  50. Kim J.E., Phys. Lett. B 564 (2003), 35–41, arXiv:hep-th/0301177; Choi K.S., Kim J.E., Phys. Lett. B 567 (2003), 87–92, arXiv:hep-ph/0305002.

  51. N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B 513 (2001) 232 https://doi.org/10.1016/S0370-2693(01)00741-9, arXiv:hep-ph/0105239.

    Article  Google Scholar 

  52. N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Rev. Lett. 86 (2001) 4757 https://doi.org/10.1103/PhysRevLett.86.4757, arXiv:hep-th/0104005.

    Article  MathSciNet  Google Scholar 

  53. J. Maalampi and M. Roos, Phys. Rept. 186 (1990) 53.

    Article  Google Scholar 

  54. Brink L., Schwarz J.H., Scherk J., Nucl. Phys. B 121 (1977), 77–92; Gliozzi F., Scherk J., Olive D.I., Nucl. Phys. B 122 (1977), 253–290.

    Google Scholar 

  55. Douglas M.R., Greene B.R., Morrison D.R., Nuclear Phys. B 506 (1997), 84–106, arXiv:hep-th/9704151.

  56. Bailin D., Love A., Phys. Rep. 315 (1999), 285–408.

    Google Scholar 

  57. Aldazabal G., Ibáñez L.E., Quevedo F., Uranga A.M., JHEP (2000), no. 8, 002, arXiv:hep-th/0005067.

  58. Lawrence A.E., Nekrasov N., Vafa C.,Nuclear Phys. B 533 (1998), 199–209, arXiv:hep-th/9803015.

  59. Kiritsis E., Phys. Rep. 421 (2005), 105–190, Erratum, Phys. Rep. 429 (2006), 121–122, arXiv:hep-th/0310001.

  60. Djouadi A., Phys. Rep. 459 (2008), 1–241, arXiv:hep-ph/0503173.

    Article  Google Scholar 

  61. M. F. Sohnius, Phys. Rept. 128 (1985) 39. https://doi.org/10.1016/0370-1573(85)90023-7

    Article  Google Scholar 

  62. Steinacker H., Springer Proceedings in Physics, Vol. 98, Springer, Berlin, 2005, 307–311, arXiv:hep-th/0409235.

  63. H. Grosse, F. Lizzi and H. Steinacker, Phys.Rev. D81 (2010) 085034 , arXiv:1001.2703 [hep-th]; H. Steinacker, Nucl. Phys. B 810 (2009) 1, arXiv:0806.2032 [hep-th].

  64. Glashow S.L., Published in Providence Grand Unif.1984:0088, 88–94.

    Google Scholar 

  65. Rizov V.A., Bulg. J. Phys. 8 (1981), 461–477.

    Google Scholar 

  66. E. Ma, M. Mondragon and G. Zoupanos, JHEP 0412 (2004) 026; S. Heinemeyer, E. Ma, M. Mondragon and G. Zoupanos, AIP Conf. Proc. 1200 (2010) 568, arXiv:0910.0501 [hep-ph].

    Google Scholar 

  67. Ma E., Mondragón M., Zoupanos G., JHEP (2004), no. 12, 026, arXiv:hep-ph/0407236.

  68. Lazarides G., Panagiotakopoulos C., Phys. Lett. B 336 (1994), 190–193, arXiv:hep-ph/9403317.

  69. Babu K.S., He X.G., Pakvasa S., Phys. Rev. D 33 (1986), 763–772.

    Article  Google Scholar 

  70. Leontaris G.K., Rizos J., Phys. Lett. B 632 (2006), 710–716, arXiv:hep-ph/0510230.

  71. S. Heinemeyer, M. Mondragon and G. Zoupanos, Int.J.Mod.Phys. A29 (2014) 18, arXiv:hep-ph/1430032.

  72. S. Heinemeyer, M. Mondragon, N. Tracas and G. Zoupanos, Springer Proc. Math. Stat. 111 (2014) 177 https://doi.org/10.1007/978-4-431-55285-7-11 [arXiv:1403.7384 [hep-ph]].

    Article  Google Scholar 

  73. S. Heinemeyer, M. Mondragon and G. Zoupanos, SIGMA 6 (2010) 049, arXiv:1001.0428 [hep-ph].

    Google Scholar 

  74. A. Chatzistavrakidis, H. Steinacker, , G. Zoupanos, PoS CORFU2011, PoC: C11-09-04.1, arXiv:1204.6498 [hep-th].

  75. A. Chatzistavrakidis, H. Steinacker, G. Zoupanos, JHEP 1109 (2011) 115, arXiv:1107.0265 [hep-th]

    Article  Google Scholar 

  76. T. Banks, W. Fischler, S. H. Shenker and L. Susskind, Phys. Rev. D 55 (1997) 5112, arXiv:hep-th/9610043.

    Article  MathSciNet  Google Scholar 

  77. I. Chepelev, Y. Makeenko and K. Zarembo, Phys. Lett. B 400 (1997) 43 [arXiv:hep-th/9701151]; A. Fayyazuddin and D. J. Smith, Mod. Phys. Lett. A 12 (1997) 1447, arXiv:hep-th/9701168; H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Nucl. Phys. B 565 (2000) 176, arXiv:hep-th/9908141.

  78. S. Iso, Y. Kimura, K. Tanaka and K. Wakatsuki, Nucl. Phys. B 604 (2001) 121, hep-th/0101102; Y. Kimura, Prog. Theor. Phys. 106 (2001) 445, arXiv:hep-th/0103192; Y. Kitazawa, Nucl. Phys. B 642 (2002) 210, arXiv:hep-th/0207115.

  79. H. Aoki, S. Iso and T. Suyama, Nucl. Phys. B 634 (2002) 71, arXiv:hep-th/0203277.

    Article  Google Scholar 

  80. R. Utiyama, Phys. Rev. 101 (1956) 1597. https://doi.org/10.1103/PhysRev.101.1597

    Article  MathSciNet  Google Scholar 

  81. T. W. B. Kibble, J. Math. Phys. 2 (1961) 212. https://doi.org/10.1063/1.1703702

    Article  MathSciNet  Google Scholar 

  82. S. W. MacDowell and F. Mansouri, Phys. Rev. Lett. 38 (1977) 739 Erratum: [Phys. Rev. Lett. 38 (1977) 1376]. https://doi.org/10.1103/PhysRevLett.38.1376, https://doi.org/10.1103/PhysRevLett.38.739

  83. T. W. B. Kibble and K. S. Stelle, In *Ezawa, H. ( Ed.), Kamefuchi, S. ( Ed.): Progress In Quantum Field Theory*, 57-81; and refs therein

    Google Scholar 

  84. A. B. Hammou, M. Lagraa and M. M. Sheikh-Jabbari, Phys. Rev. D 66 (2002) 025025 ,https://doi.org/10.1103/PhysRevD.66.025025, [arXiv:hep-th/0110291].

  85. P. Vitale, Fortsch. Phys. 62 (2014) 825 https://doi.org/10.1002/prop.201400037, arXiv:1406.1372 [hep-th].

    Article  MathSciNet  Google Scholar 

  86. J. DeBellis, C. Saemann and R. J. Szabo, JHEP 1104 (2011) 075 https://doi.org/10.1007/JHEP04(2011)075, arXiv:1012.2236 [hep-th].

  87. S. Kováčik and P. Prešnajder, J. Math. Phys. 54 (2013) 102103 https://doi.org/10.1063/1.4826355, arXiv:1309.4592 [math-ph].

    Article  MathSciNet  Google Scholar 

  88. D. Jurman and H. Steinacker, JHEP 1401 (2014) 100 https://doi.org/10.1007/JHEP01(2014)100 [arXiv:1309.1598 [hep-th]].

Download references

Acknowledgements

We acknowledge support by the COST action QSPACE MP1405. G.Z. thanks the MPI for Physics in Munich for hospitality and the A.v.Humboldt Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zoupanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manolakos, G., Zoupanos, G. (2018). Non-commutativity in Unified Theories and Gravity. In: Dobrev, V. (eds) Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1 . LT-XII/QTS-X 2017. Springer Proceedings in Mathematics & Statistics, vol 263. Springer, Singapore. https://doi.org/10.1007/978-981-13-2715-5_10

Download citation

Publish with us

Policies and ethics