Skip to main content

Substrate Enabled Liquid Metal Machine

  • Chapter
  • First Online:
Liquid Metal Soft Machines

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

  • 955 Accesses

Abstract

Although liquid metals such as eutectic gallium–indium and gallium–indium–tin have been found extremely important in making various kinds of soft machines, there however always exists a big challenge to flexibly and stably control the shape of liquid metal due to its extremely high surface tension. Along this direction, the present lab (Hu et al. in Adv Mater 28:9210–9217, 2016 [1]) made a fundamental discovery that the bouncing bright liquid metal droplet in alkaline electrolyte can be transformed to a flat and dull puddle when placed on graphite surface. Through the intrinsic interactions between liquid metal and graphite, the liquid metal puddle on graphite can be manipulated as desired into various stable shapes with sharp angles in semi-open space via a simple and highly feasible way. Moreover, it was also disclosed that the electric field can be flexibly applied to control the transformation, locomotion even anti-gravity behavior of liquid metal puddle on graphite. Such phenomena are fundamentally different from those observed before when placing liquid metal on glass substrate. Further, if the liquid metal was fed with aluminum in advance, the graphite-like substrate would induce a group of very unusual amoeba-like behaviors for such self-driven liquid metal machines. With basic science value and practical significance, these finding suggests a pivotal strategy for liquid metal patterning as well as developing future soft mobile machine owning three-dimensional locomotion capability. It also adds new knowledge for understanding the liquid metal science. This chapter presents the typical strategies and mechanisms in manipulating the liquid metal and the allied machine systems inside the electrolyte environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu L, Wang L, Ding Y, Zhan S, Liu J (2016) Manipulation of liquid metals on a graphite surface. Adv Mater 28:9210–9217

    Article  CAS  Google Scholar 

  2. Zheng Y, He ZZ, Gao Y et al (2013) Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep 3:1786

    Article  Google Scholar 

  3. Boley JW, White EL, Chiu GT et al (2014) Direct writing of gallium-indium alloy for stretchable electronics. Adv Funct Mater 24:3501–3507

    Article  CAS  Google Scholar 

  4. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726

    Article  CAS  Google Scholar 

  5. Tian L, Gao M, Gui L (2017) A microfluidic chip for liquid metal droplet generation and sorting. Micromachines 8(2):39

    Article  Google Scholar 

  6. Tang SY, Khoshmanesh K, Sivan V et al (2014) Liquid metal enabled pump. P Natl Acad Sci U S A 111:3304–3309

    Article  CAS  Google Scholar 

  7. Zhang J, Yao Y, Sheng L et al (2015) Self-fueled biomimetic liquid metal mollusk. Adv Mater 27:2648–2655

    Article  CAS  Google Scholar 

  8. Deng Y, Liu J (2010) Hybrid liquid metal–water cooling system for heat dissipation of high power density microdevices. Heat Mass Transfer 46:1327–1334

    Article  CAS  Google Scholar 

  9. Li HY, Liu J (2011) Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers. Front Energy 5:20–42

    Article  CAS  Google Scholar 

  10. Ma KQ, Liu J (2007) Liquid metal cooling in thermal management of computer chips. Front Energy 1:384–402

    Google Scholar 

  11. Zhao X, Xu S, Liu J (2017) Surface tension of liquid metal: Role, mechanism and application. Front Energy 11:535–567

    Article  Google Scholar 

  12. Gao M, Gui L (2014) A handy liquid metal based electroosmotic flow pump. Lab Chip 14:1866–1872

    Article  CAS  Google Scholar 

  13. Kim HJ, Maleki T, Wei P et al (2009) A biaxial stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J Microelectromech S 18:138–146

    Article  CAS  Google Scholar 

  14. Cheng S, Wu Z (2010) Microfluidic stretchable RF electronics. Lab Chip 10:3227–3234

    Article  CAS  Google Scholar 

  15. Jeong SH, Hagman A, Hjort K et al (2012) Liquid alloy printing of microfluidic stretchable electronics. Lab Chip 12:4657–4664

    Article  CAS  Google Scholar 

  16. Wang Q, Yu Y, Yang J et al (2016) Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing. Adv Mater 27:7109–7116

    Article  Google Scholar 

  17. Tang SY, Sivan V, Petersen P et al (2015) Liquid metal actuator for inducing chaotic advection. Adv Funct Mater 24:5851–5858

    Article  Google Scholar 

  18. Chrimes AF, Berean KJ, Mitchell A et al (2016) Controlled electrochemical deformation of liquid-phase gallium. ACS Appl Mater Interfaces 8:3833–3839

    Article  CAS  Google Scholar 

  19. Tang SY, Sivan V, Khoshmanesh K et al (2013) Electrochemically induced actuation of liquid metal marbles. Nanoscale 5:5949–5957

    Article  CAS  Google Scholar 

  20. Sheng L, Zhang J, Liu J (2014) Diverse transformations of liquid metals between different morphologies. Adv Mater 26:6036–6042

    Article  CAS  Google Scholar 

  21. Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521:467–475

    Article  CAS  Google Scholar 

  22. Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–294

    Article  CAS  Google Scholar 

  23. Shepherd RF, Ilievski F, Choi W et al (2011) Multigait soft robot. P Natl Acad Sci Usa 108:20400–20403

    Article  CAS  Google Scholar 

  24. Zhang J, Sheng L, Liu J (2014) Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects. Sci Rep 4:7116

    Article  Google Scholar 

  25. Rao R, Rao AM, Xu B et al (2005) Blueshifted Raman scattering and its correlation with the growth direction in gallium oxide nanowires. J Appl Phys 98:094312–094315

    Article  Google Scholar 

  26. Hu L, Yuan B, Liu J (2017a) Liquid metal amoeba with spontaneous pseudopodia formation and motion capability. Sci Rep 7:7256–7264

    Article  Google Scholar 

  27. Hu L, Li J, Tang J, Liu J (2017b) Surface effects of liquid metal amoeba. Sci Bull 62:700–706

    Article  CAS  Google Scholar 

  28. Marvi H, Gong C, Gravish N et al (2014) Sidewinding with minimal slip: snake and robot ascent of sandy slopes. Science 346:224–229

    Article  CAS  Google Scholar 

  29. Aguilar J, Goldman DI (2015) Robophysical study of jumping dynamics on granular media. Nat Phys 12:278–283

    Article  Google Scholar 

  30. Libby T, Moore TY, Changsiu E et al (2012) Tail-assisted pitch control in lizards, robots and dinosaurs. Nature 481:181–184

    Article  CAS  Google Scholar 

  31. Dickinson MH, Farley CT, Full RJ et al (2000) How animals move: an integrative view. Science 288:100–106

    Article  CAS  Google Scholar 

  32. Jeon KW (1973) The biology of amoeba. Academic Press

    Google Scholar 

  33. Purchon RD. (1977) The biology of the Mollusca. Pergamon

    Google Scholar 

  34. Lauder, GV, Tangorra, JL (2015) Fish locomotion: biology and robotics of body and fin-based movements. Robot fish. Springer Berlin Heidelberg

    Google Scholar 

  35. Taubes G (2000) Biologists and engineers create a new generation of robots that imitate life. Science 288:80–83

    Article  CAS  Google Scholar 

  36. Ijspeert AJ (2014) Biorobotics: using robots to emulate and investigate agile locomotion. Science 346:196–203

    Article  CAS  Google Scholar 

  37. Pollard TD, Ito S (1970) Cytoplasmic filaments of amoeba proteus. i. the role of filaments in consistency changes and movement. J Cell Biol 46:267–289

    Article  CAS  Google Scholar 

  38. Yokoi H, Nagai T, Ishida T et al (2003) Amoeba-like robots in the perspective of control architecture and morphology/materials. The New Species. Springer, Morpho-functional Machines, pp P99–12

    Google Scholar 

  39. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318:1088–1093

    Article  CAS  Google Scholar 

  40. Moubarak P, Ben-Tzvi P (2012) Modular and reconfigurable mobile robotics. Robot Auton Syst 60:1648–1663

    Article  Google Scholar 

  41. Liu JG, Shugen MA (2008) Network-based reconfiguration routes for a self-reconfigurable robot. Sci China 51:1532–1546

    Google Scholar 

  42. Umedachi T, Ito K, Ishiguro A (2015) Soft-bodied amoeba-inspired robot that switches between qualitatively different behaviors with decentralized stiffness control. Adapt Behav 23:97–108

    Article  Google Scholar 

  43. Li B, Ma S, Liu J (2009) Amoeba-i: a shape-shifting modular robot for urban search and rescue. Adv Rob 23:1057–1083

    Article  Google Scholar 

  44. Hirai T, Ogiwara T, Fujii K et al (2009) Electrically active artificial pupil showing amoeba-like pseudopodial deformation. Adv Mater 21:2886–2888

    Article  CAS  Google Scholar 

  45. Okuzaki H (2014) Ionic liquid/polyurethane/pedot: pss composite actuators. Sens Actuators B Chem. 194:59–63

    Article  CAS  Google Scholar 

  46. Ma M, Guo L, Anderson DG, Langer R (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339:186–189

    Article  CAS  Google Scholar 

  47. Sheng L, Teo S, Liu J (2016) Liquid metal painted stretchable capacitor sensor devices for wearable healthcare electronics. Journal of Medical and Biological Engineering 36(2):265–272

    Article  Google Scholar 

  48. Yuan B, Tan SC, Jing L (2016) Dynamic hydrogen generation phenomenon of aluminum fed liquid phase ga–in alloy inside naoh electrolyte. Int J Hydrogen Energ 41:1453–1459

    Article  CAS  Google Scholar 

  49. Zavabeti A, Daeneke T, Chrimes AF et al (2016) Ionic imbalance induced self-propulsion of liquid metals. Nat Commun 7:12402

    Article  CAS  Google Scholar 

  50. Lemos RD, Giese H, Müller HA et al (2013) Software engineering for self-adaptive systems: a second research roadmap. Software Engineering for Self-Adaptive Systems II. Springer, Berlin Heidelberg

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Sheng, L., He, ZZ. (2019). Substrate Enabled Liquid Metal Machine. In: Liquid Metal Soft Machines. Topics in Mining, Metallurgy and Materials Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-2709-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2709-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2708-7

  • Online ISBN: 978-981-13-2709-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics